Credit: Extinction Rebellion

On Tuesday 2nd April 2019, environmental activists from the Extinction Rebellion group staged a parliamentary protest in London by glueing their bottoms to the windows of the viewing gallery of the House of Commons during a Brexit debate.

They used this cheeky tactic to call on British politicians to act on the ‘Climate and Ecological Crisis’. On its website, Extinction Rebellion wrote that “Government must act now to halt biodiversity loss and reduce greenhouse gas emissions to net zero by 2025”.

There is an irony here in that the call to immediate action was delivered at the precise moment when the UK government was in a state of complete paralysis over Brexit. Then again, the demonstrators’ demands weren’t meant to be taken entirely at face value. Even the most optimistic environmental biologists and chemical engineers would shake their heads at what was proposed to be accomplished in the space of just six years.

What the demonstration did achieve was to focus attention on the task in hand and the current state of progress. And it prompted CarnotCycle to pen this post on one promising technology for carbon capture and conversion (CCC) in which UK researchers are playing a key role.

– – – –

It is a well-known fact, not to mention a subject of serious environmental concern, that cows burp methane as a result of anaerobic fermentation of the grass they eat. And being aerobic respirers they also exhale carbon dioxide. Both these substances are potent greenhouse gases associated with human activity whose atmospheric levels, according to the best available science, must at least be stabilized in order to stand a chance of keeping global warming within manageable limits.

The cow in our picture is asking us an interesting question. What if it were possible to react carbon dioxide and methane together to form products that are not greenhouse gases? Even better, what if the reaction products could be put to useful purposes? Just think how cute that would be!

Putting our physical chemistry hats on for a moment and looking at the above equation, we notice that the oxidation states of carbon in the two molecules are at opposite ends of the scale. Methane has the most reduced form of carbon (-4) while carbon dioxide has the most oxidized form of carbon (+4). A redox reaction between the two looks possible and indeed is possible, albeit at elevated temperatures:

This process – called dry reforming of methane or DRM – was first introduced by Germany’s dynamic duo, Franz Fischer and Hans Tropsch, in 1928 but extensive investigation only started in the 1990s when increasing concerns about the greenhouse effect were raised by the international scientific community.

Notice how DRM simultaneously converts two greenhouse gases into two non-greenhouse gases which together make valuable syngas (1:1), a key industrial intermediate in the production of chemicals and clean fuels.

– – – –

Well, sort of. The big difficulty in making DRM viable relates to side reactions. The DRM reaction proceeds above 918K but then so does the thermal decomposition of both methane and carbon monoxide which results in carbon being deposited on the catalyst, clogging up the pores and thereby deactivating it.

This problem can however be mitigated in a very neat way by combining DRM with another methane-reforming process, namely steam reforming (SRM). Coupling reactions in this way not only reutilizes the deposited carbon but also adds a product stream with an H2/CO ratio of 3:1 which enables the syngas ratio to be adjusted for the synthesis of methanol, ethanoic acid or dimethyl ether (DME), which has promise as a sulfur-free diesel fuel, or towards the (2n+1):n H2/CO ratio required for Fischer-Tropsch synthesis of alkane fuels

The other problem is that all these reactions are endothermic (heat requiring). This energy has to be obtained from somewhere, and now here comes the next neat idea. Adding oxygen to the reactant stream allows partial oxidation of methane (POM) and catalytic combustion of methane (CCM) to take place, which are exothermic reactions that can supply the necessary heat

Putting three reforming agents – carbon dioxide, water and oxygen – together in the reactant stream with a methane feedstock creates a sufficiently energy-efficient overall process known as ‘tri-reforming’.

– – – –

To complete the conceptual scheme, the tri-reforming process is integrated into a cycle where the syngas output is utilized in the tri-generation of fuels, industrial chemicals and electricity, with the flue gases from these processes being fed back after nitrogen purging to the tri-reforming reactor. Carbon dioxide can also be fed into the cycle from external sources such as power plants and cement works.

Note that in principle, carbon dioxide can be fed into the cycle from established carbon capture and storage (CCS) processes. In this way underground reservoirs of anthropogenic carbon dioxide can be utilized as a feedstock for additional tri-generation.

– – – –

Almost. I mentioned at the start that the UK was involved in CCC research so I should say a few words about that. Scientists at Oxford and Cambridge are working with the King Abdulaziz City for Science and Technology in Saudi Arabia and the National Natural Science Foundation of China on the tri-reforming/tri-generation technology detailed above.

Since China is the world’s largest CO2 emitter and Saudi Arabia is the world’s largest oil producer, the Anglo-Sino-Saudi initiative seems a sensible geoscientific cluster. The news was announced on 28 January 2018, more than a year before the Extinction Rebellion demonstrations in London.

– – – –

Suggested further reading

A mini-review on CO2 reforming of methane

Published in June 2018 this is a useful and easily readable grounder covering the thermodynamic, kinetic, catalysis and commercial aspects of the subject.

Turning carbon dioxide into fuel

A paper co-written by the Oxbridge scientists involved in the Anglo-Sino-Saudi initiative. It was published in 2010, which shows that these guys have been on the case a while. Climate activists take note, and read their stuff.

Turning carbon dioxide into fuel – a new UK-China-Saudi Arabia initiative

The January 2018 press release referred to above. I reckon my poly-alliterative Anglo-Sino-Saudi sounds better.

Tri-reforming: a new process for reducing CO2 emissions

A bedrock paper (January 2001) from Chunshan Song at Penn State. The process diagram featured above is taken from this paper. If you don’t read anything else, read this one.

– – – –

P Mander May 2019

  1. Peter Mander says:

    There is indeed concern about NH3 gas from all sources due to its significant role in the formation of atmospheric aerosol which leads to haze and visibility degradation. But that seems to be the extent of current worries. According to internet sources its GWP and ODP are both rated at zero.


  2. FlowCoef says:

    Has there been any concern about ammonia fumes from chicken poultry?


  3. Peter Mander says:

    For computation references check out the first paper under suggested further reading.


  4. Sebastian Mannaerts says:

    Under further reading we find in the article by Wang etal (1996), p898:
    Thermodynamics of CO2 Reforming of Methane: The corresponding carbon dioxide reforming reaction is described as {CO2+CH4==2CO+2H2} ∆H(298K)=+247 kJ/mol (3), ∆G°=61770-67.32T).
    This resembles the equation above, but raises questions, in particular what is the nature of this ∆G° equations as 61770 is not the standard enthalpy of the reaction involved.?


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s