Archive for the ‘history of science’ Category

From the perspective of classical thermodynamics, osmosis has a rather unclassical history. Part of the reason for this, I suspect, is that osmosis was originally categorised under the heading of biology. I can remember witnessing the first practical demonstration of osmosis in a biology class, the phenomenon being explained in terms of pores (think invisible holes) in the membrane that were big enough to let water molecules through, but not big enough to let sucrose molecules through. It was just like a kitchen sieve, we were told. It lets the fine flour pass through but not clumps. This was very much the method of biology in my day, explaining things in terms of imagined mechanism and analogy.

And it wasn’t just in my day. In 1883, JH van ‘t Hoff, an able theoretician and one of the founders of the new discipline of physical chemistry, became suddenly convinced that solutions and gases obeyed the same fundamental law, pv = RT. Imagined mechanism swiftly followed. In van ‘t Hoff’s interpretation, osmotic pressure depended on the impact of solute molecules against the semipermeable membrane because solvent molecules, being present on both sides of the membrane through which they could freely pass, did not enter into consideration.

It all seemed very plausible, especially when van ‘t Hoff used the osmotic pressure measurements of the German botanist Wilhelm Pfeffer to compute the value of R in what became known as the van ‘t Hoff equation

ts04

where Π is the osmotic pressure, and found that the calculated value for R was almost identical with the familiar gas constant. There really did seem to be a parallelism between the properties of solutions and gases.

ae01

JH van ‘t Hoff (1852-1911)

The first sign that there was anything amiss with the so-called gaseous theory of solutions came in 1891 when van ‘t Hoff’s close colleague Wilhelm Ostwald produced unassailable proof that osmotic pressure is independent of the nature of the membrane. This meant that hypothetical arguments as to the cause of osmotic pressure, such as van ‘t Hoff had used as the basis of his theory, were inadmissible.

A year later, in 1892, van ‘t Hoff changed his stance by declaring that the mechanism of osmosis was unimportant. But this did not affect the validity of his osmotic pressure equation ΠV = RT. After all, it had been shown to be in close agreement with experimental data for very dilute solutions.

It would be decades – the 1930s in fact – before the van ‘t Hoff equation’s formal identity with the ideal gas equation was shown to be coincidental, and that the proper thermodynamic explanation of osmotic pressure lay elsewhere.

But long before the 1930s, even before Wilhelm Pfeffer began his osmotic pressure experiments upon which van ‘t Hoff subsequently based his ideas, someone had already published a thermodynamically exact rationale for osmosis that did not rely on any hypothesis as to cause.

That someone was the American physicist Josiah Willard Gibbs. The year was 1875.

gibbs

J. Willard Gibbs (1839-1903)

– – – –

Osmosis without mechanism

It is a remarkable feature of Gibbs’ On the Equilibrium of Heterogeneous Substances that having introduced the concept of chemical potential, he first considers osmotic forces before moving on to the fundamental equations for which the work is chiefly known. The reason is Gibbs’ insistence on logical order of presentation. The discussion of chemical potential immediately involves equations of condition, among whose different causes are what Gibbs calls a diaphragm, i.e. a semipermeable membrane. Hence the early appearance of the following section

to02

In equation 77, Gibbs presents a new way of understanding osmotic pressure. He makes no hypotheses about how a semipermeable membrane might work, but simply states the equations of condition which follow from the presence of such a membrane in the kind of system he describes.

This frees osmosis from considerations of mechanism, and explains it solely in terms of differences in chemical potential in components which can pass the diaphragm while other components cannot.

In order to achieve equilibrium between say a solution and its solvent, where only the solvent can pass the diaphragm, the chemical potential of the solvent in the fluid on both sides of the membrane must be the same. This necessitates applying additional pressure to the solution to increase the chemical potential of the solvent in the solution so it equals that of the pure solvent, temperature remaining constant. At equilibrium, the resulting difference in pressure across the membrane is the osmotic pressure.

Note that increasing the pressure always increases the chemical potential since

to03

is always positive (V1 is the partial molar volume of the solvent in the solution).

– – – –

Europe fails to notice (almost)

Gibbs published On the Equilibrium of Heterogeneous Substances in Transactions of the Connecticut Academy. Choosing such an obscure journal (seen from a European perspective) clearly would not attract much attention across the pond, but Gibbs had a secret weapon. He had a mailing list of the world’s greatest scientists to which he sent reprints of his papers.

One of the names on that list was James Clerk Maxwell, who instantly appreciated Gibbs’ work and began to promote it in Europe. On Wednesday 24 May 1876, the year that ‘Equilibrium’ was first published, Maxwell gave an address at the South Kensington Conferences in London on the subject of Gibbs’ development of the doctrine of available energy on the basis of his new concept of the chemical potentials of the constituent substances. But the audience did not share Maxwell’s enthusiasm, or in all likelihood share his grasp of Gibbs’ ideas. When Maxwell tragically died three years later, Gibbs’ powerful ideas lost their only real champion in Europe.

It was not until 1891 that interest in Gibbs masterwork would resurface through the agency of Wilhelm Ostwald, who together with van ‘t Hoff and Arrhenius were the founders of the modern school of physical chemistry.

ts07

Wilhelm Ostwald (1853-1932) He not only translated Gibbs’ masterwork into German, but also produced a profound proof – worthy of Sadi Carnot himself – that osmotic pressure must be independent of the nature of the semipermeable membrane.

Although perhaps overshadowed by his colleagues, Ostwald had a talent for sensing the direction that the future would take and was also a shrewd judge of intellect – he instinctively felt that there were hidden treasures in Gibbs’ magnum opus. After spending an entire year translating ‘Equilibrium’ into German, Ostwald wrote to Gibbs:

“The translation of your main work is nearly complete and I cannot resist repeating here my amazement. If you had published this work over a longer period of time in separate essays in an accessible journal, you would now be regarded as by far the greatest thermodynamicist since Clausius – not only in the small circle of those conversant with your work, but universally—and as one who frequently goes far beyond him in the certainty and scope of your physical judgment. The German translation, hopefully, will more secure for it the general recognition it deserves.”

The following year – 1892 – another respected scientist sent a letter to Gibbs regarding ‘Equilibrium’. This time it was the British physicist, Lord Rayleigh, who asked Gibbs:

“Have you ever thought of bringing out a new edition of, or a treatise founded upon, your “Equilibrium of Het. Substances.” The original version though now attracting the attention it deserves, is too condensed and too difficult for most, I might say all, readers. The result is that as has happened to myself, the idea is not grasped until the subject has come up in one’s own mind more or less independently.”

Rayleigh was probably just being diplomatic when he remarked that Gibbs’ treatise was ‘now attracting the attention it deserves’. The plain fact is that nobody gave it any attention at all. Gibbs and his explanation of osmosis in terms of chemical potential was passed over, while European and especially British theoretical work centered on the more familiar and more easily understood concept of vapor pressure.

– – – –

Gibbs tries again

Although van ‘t Hoff’s osmotic pressure equation ΠV = RT soon gained the status of a law, the gaseous theory that lay behind it remained clouded in controversy. In particular, van ‘t Hoff’s deduction of the proportionality between osmotic pressure and concentration was an analogy rather than a proof, since it made use of hypothetical considerations as to the cause of osmotic pressure. Following Ostwald’s proof that these were inadmissible, the gaseous theory began to look hollow. A better theory was needed.

to04

Lord Kelvin (1824-1907) and Lord Rayleigh (1842-1919)

This was provided in 1896 by the British physicist, Lord Rayleigh, whose proof was free of hypothesis but did make use of Avogadro’s law, thereby continuing to assert a parallelism between the properties of solutions and gases. Heavyweight opposition to this soon materialized from the redoubtable Lord Kelvin. In a letter to Nature (21 January 1897) he charged that the application of Avogadro’s law to solutions had “manifestly no theoretical foundation at present” and further contended that

“No molecular theory can, for sugar or common salt or alcohol, dissolved in water, tell us what is the true osmotic pressure against a membrane permeable to water only, without taking into account laws quite unknown to us at present regarding the three sets of mutual attractions or repulsions: (1) between the molecules of the dissolved substance; (2) between the molecules of water; (3) between the molecules of the dissolved substance and the molecules of water.”

Lord Kelvin’s letter in Nature elicited a prompt response from none other than Josiah Willard Gibbs in America. Twenty-one years had now passed since James Clerk Maxwell first tried to interest Europe in the concept of chemical potentials. In Kelvin’s letter, with its feisty attack on the gaseous theory, Gibbs saw the opportunity to try again.

In his letter to Nature (18 March 1897), Gibbs opined that “Lord Kelvin’s very interesting problem concerning molecules which differ only in their power of passing a diaphragm, seems only to require for its solution the relation between density and pressure”, and highlighted the advantage of using his potentials to express van ‘t Hoff’s law:

“It will be convenient to use certain quantities which may be called the potentials of the solvent and of the solutum, the term being thus defined: – In any sensibly homogeneous mass, the potential of any independently variable component substance is the differential coefficient of the thermodynamic energy of the mass taken with respect to that component, the entropy and volume of the mass and the quantities of its other components remaining constant. The advantage of using such potentials in the theory of semi-permeable diaphragms consists partly in the convenient form of the condition of equilibrium, the potential for any substance to which a diaphragm is freely permeable having the same value on both sides of the diaphragm, and partly in our ability to express van’t Hoff law as a relation between the quantities characterizing the state of the solution, without reference to any experimental arrangement.”

But once again, Gibbs and his chemical potentials failed to garner interest in Europe. His timing was also unfortunate, since British experimental research into osmosis was soon to be stimulated by the aristocrat-turned-scientist Lord Berkeley, and this in turn would stimulate a new band of British theoreticians, including AW Porter and HL Callendar, who would base their theoretical efforts firmly on vapor pressure.

– – – –

Things Come Full Circle

As the new century dawned, van ‘t Hoff cemented his reputation with the award of the very first Nobel Prize for Chemistry “in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

The osmotic pressure law was held in high esteem, and despite Lord Kelvin’s protestations, Britain was well disposed towards the Gaseous Theory of Solutions. The idea circulating at the time was that the refinements of the ideal gas law that had been shown to apply to real gases, could equally well be applied to more concentrated solutions. As Lord Berkeley put it in the introduction to a paper communicated to the Royal Society in London in May 1904:

“The following work was undertaken with a view to obtaining data for the tentative application of van der Waals’ equation to concentrated solutions. It is evidently probable that if the ordinary gas equation be applicable to dilute solutions, then that of van der Waals, or one of analogous form, should apply to concentrated solutions – that is, to solutions having large osmotic pressures.”

Lord Berkeley’s landmark experimental studies on the osmotic pressure of concentrated solutions called renewed attention to the subject among theorists, who now had some fresh and very accurate data to work with. Alfred Porter at University College London attempted to make a more complete theory by considering the compressibility of a solution to which osmotic pressure was applied, while Hugh Callendar at Imperial College London combined the vapor pressure interpretation of osmosis with the hypothesis that osmosis could be described as vapor passing through a large number of fine capillaries in the semipermeable membrane. This was in 1908.

to05

H L Callendar (1863-1930)

So seventeen years after Wilhelm Ostwald conclusively proved that hypothetical arguments as to the cause of osmotic pressure were inadmissible, things came full circle with hypothetical arguments once more being advanced as to the cause of osmotic pressure.

And as for Gibbs, his ideas were as far away as ever from British and European Science. The osmosis papers of both Porter (1907) and Callendar (1908) are substantial in referenced content, but nowhere do either of them make any mention of Gibbs or his explanation of osmosis on the basis of chemical potentials.

There is a special irony in this, since in Callendar’s case at least, the scientific papers of J Willard Gibbs were presumably close at hand. Perhaps even on his office bookshelf. Because that copy of Gibbs’ works shown in the header photo of this post – it’s a 1906 first edition – was Hugh Callendar’s personal copy, which he signed on the front endpaper.

to06

Hugh Callendar’s signature on the endpaper of his personal copy of Gibbs’ Scientific Papers, Volume 1, Thermodynamics.

– – – –

Epilogue

Throughout this post, I have made repeated references to that inspired piece of thinking by Wilhelm Ostwald which conclusively demonstrated that osmotic pressure must be independent of the nature of the membrane.

Ostwald’s reasoning is so lucid and compelling, that one wonders why it didn’t put an end to speculation on osmotic mechanisms. But it didn’t, and hasn’t, and probably won’t.

Here is how Ostwald presented the argument in his own Lehrbuch der allgemeinen Chemie (1891). Enjoy.

ts08

“… it may be stated with certainty that the amount of pressure is independent of the nature of the membrane, provided that the membrane is not permeable by the dissolved substance. To understand this, let it be supposed that two separating partitions, A and B, formed of different membranes, are placed in a cylinder (fig. 17). Let the space between the membranes contain a solution and let there be pure water in the space at the ends of the cylinder. Let the membrane A show a higher pressure, P, and the membrane B show a smaller pressure, p. At the outset, water will pass through both membranes into the inner space until the pressure p is attained, when the passage of water through B will cease, but the passage through A will continue. As soon as the pressure in the inner space has been thus increased above p, water will be pressed out through B. The pressure can never reach the value P; water must enter continuously through A, while a finite difference of pressures is maintained. If this were realised we should have a machine capable of performing infinite work, which is impossible. A similar demonstration holds good if p>P ; it is, therefore, necessary that P=p; in other words, it follows necessarily that osmotic pressure is independent of the nature of the membrane.”

(English translation by Matthew Pattison Muir)

– – – –

P Mander July 2015

William Nicholson and Anthony Carlisle

May 1800: Carlisle (left) and Nicholson discover electrolysis

The two previous posts on this blog concerning the leaking of details about the newly-invented Voltaic pile to Anthony Carlisle and William Nicholson, and their subsequent discovery of electrolysis, are more about the path of temptation and birth of electrochemistry than about classical thermodynamics. In fact there was no thermodynamic content at all.

So by way of steering this set of posts back on track, I thought I would apply contemporary thermodynamic knowledge to Carlisle and Nicholson’s 18th century activities, in order to give another perspective to their famous experiments.

– – – –

The Voltaic pile

cn02

Z = zinc, A = silver

In thermodynamic terms, Alessandro Volta’s fabulous invention – an early form of battery – is a system capable of performing additional work other than pressure-volume work. The extra capability can be incorporated into the fundamental equation of thermodynamics by adding a further generalised force-displacement term: the intensive variable is the electrical potential E, whose conjugate extensive variable is the charge Q moved across that potential

tcn01

hence

tcn02

At constant temperature and pressure, the left hand side identifies with dG. For an appreciable difference therefore

tcn03

where E is the electromotive force of the cell, Q is the charge moved across the potential, and ΔGrxn is the free energy change of the reaction taking place in the battery.

For one mole of reaction, Q = nF where n is the number of moles of electrons transferred per mole of reaction, and F is the total charge on a mole of electrons, otherwise known as the Faraday. For a reaction to occur spontaneously at constant temperature and pressure, ΔGrxn must be negative and so the EMF must be positive. Under standard conditions therefore

tcn04

The redox reaction which took place in the Voltaic pile constructed by Carlisle and Nicholson was

tcn05

ΔG0rxn for this reaction is –146.7 kJ/mole, and n=2, giving an EMF of 0.762 volts.

We know from Nicholson’s published paper that their first Voltaic pile consisted of “17 half crowns, with a like number of pieces of zinc”. We also know that Volta’s method of constructing the pile – which Carlisle and Nicholson followed – resulted in the uppermost and lowest discs acting merely as conductors for the adjoining discs. Thus there were not 17, but 16 cells in Carlisle and Nicholson’s first Voltaic pile, giving a total EMF of 12.192 volts.

– – – –

External work

On May 1st, 1800, Carlisle and Nicholson set up their Voltaic pile, gave themselves an obligatory electric shock, and then began experiments with an electrometer which showed “that the action of the instrument was freely transmitted through the usual conductors of electricity, but stopped by glass and other non-conductors.”

Electrical contact with the pile was assisted by placing a drop of water on the uppermost disc, and it was this action which opened the path to discovery. Nicholson records in his paper that at an early stage in these experiments, “Mr. Carlisle observed a disengagement of gas round the touching wire. This gas, though very minute in quantity, evidently seemed to me to have the smell afforded by hydrogen”.

The fact that gas was formed “round the touching wire” indicates that the contact was intermittent: when the wire was in contact with the water drop but not the zinc disc, a miniature electrolytic cell was formed and hydrogen gas was evolved at the wire cathode, while at the anode the zinc conductor was immediately oxidised as soon as the oxygen gas was formed.

In thermodynamic terms, the electrochemical cells in the pile were being used to do external work on the electrolytic cell in which the decomposition of water took place

tcn06

ΔG0rxn for this reaction is +237.2 kJ/mole. So it can be seen that the external work done by the pile consists of driving what is in effect the combustion of hydrogen in a backwards direction to recover the reactants.

– – – –

Intuitive

Carlisle and Nicholson were intuitive physical chemists. They knew that water was composed of two gases, hydrogen and oxygen, so when bubbles which smelled of hydrogen were observed in their first experiment, it immediately set them thinking. Nicholson wrote of being “led by our reasoning on the first appearance of hydrogen to expect a decomposition of water.”

cn06

William Nicholson (1753-1815)

Nicholson used the term decomposition, so it seems safe to assume they formed the notion that just as water is composed from its constituent gases, it can be decomposed to recover them. That is a powerful conception, the idea that the combustion of hydrogen is a reversible process.

Whether Carlisle and Nicholson extended this thought to other chemical reactions, or even to chemical reactions in general, we do not know. But their demonstration of reversibility, beneath which the principle of chemical equilibrium lies, was an achievement of perhaps even greater moment than the discovery of electrolysis by which they achieved it.

vol04

Anthony Carlisle (1768-1840)

– – – –

Redox reactions

Carlisle and Nicholson’s discovery of electrolysis was made possible by the fact that the decomposition of water into hydrogen and oxygen is a redox reaction. In fact every reaction that takes place in an electrolytic cell is a redox reaction, with oxidation taking place at the anode and reduction taking place at the cathode. The overall electrolytic reaction is thus divided into two half-reactions. In the case of the electrolysis of water, we have

tcn07

These combined half-reactions are not spontaneous. To facilitate this redox process requires EQ work, which in Carlisle and Nicholson’s case was supplied by the Voltaic pile.

Redox reactions also take place in every voltaic cell, with oxidation at the anode and reduction at the cathode. The difference is that the combined half-reactions are spontaneous, thereby making the cell capable of performing EQ work.

The spontaneous redox reactions in voltaic cells, and the non-spontaneous redox reactions in electrolytic cells, can best be understood by looking at a table of standard oxidation potentials arranged in descending order, such as the one shown below. Using such a list, the EMF of the cell is calculated by subtracting the cathode potential from the anode potential.

[Note that if you use a table of standard reduction potentials, the signs are reversed and the EMF of the cell is calculated by subtracting the anode potential from the cathode potential.]

For voltaic cells, the half-reaction taking place left-to-right at the anode (oxidation) appears higher in the list than the half-reaction taking place right-to-left at the cathode (reduction). The EMF of the cell is positive, and so ΔG will be negative, meaning that the cell reaction is spontaneous and thus capable of performing EQ work.

The situation is reversed for electrolytic cells. The half-reaction taking place left-to-right at the anode (oxidation) appears lower in the list than the half-reaction taking place right-to-left at the cathode (reduction). The EMF of the cell is negative, and so ΔG will be positive, meaning that the cell reaction is non-spontaneous and that EQ work must be performed on the cell to facilitate electrolysis.

The half-reactions of Carlisle and Nicholson’s Voltaic pile, and their platinum-electrode electrolytic cell, are indicated in the table below.

tcn08

Table of standard oxidation potentials

– – – –

The advent of the fuel cell

Anthony Carlisle and William Nicholson

If Carlisle and Nicholson had disconnected their platinum-wire electrolytic cell after bubbles of hydrogen and oxygen had formed on the respective electrodes, and then connected an electrometer across the wires, they would have added yet another momentous discovery to that of electrolysis. They would have discovered the fuel cell.

From a thermodynamic perspective, it is a fairly straightforward matter to comprehend. Under ordinary temperature and pressure conditions, the decomposition of water is a non-spontaneous process; work is required to drive the reaction shown below in the non-spontaneous direction. This work was provided by the Voltaic pile, the effect of which was to increase the Gibbs free energy of the reaction system.

tcn10

Upon disconnection of the Voltaic pile, and the substitution of a circuit wire, the reaction would spontaneously proceed in the reverse direction, decreasing the Gibbs free energy of the reaction system. This system would be capable of performing EQ work.

The reversal of reaction direction transforms the electrolytic cell into a voltaic cell, whose arrangement can be written

H2(g)/Pt | electrolyte | Pt/O2(g)

As can be seen from the above table, the EMF of this voltaic cell is 1.229 volts. We know it today as the hydrogen fuel cell.

Carlisle and Nicholson most surely created the first fuel cell in May 1800. They just didn’t apprehend it, nor did they operate it as a voltaic cell – at least we have no record that they did. So we must classify Carlisle and Nicholson’s fuel cell as an overlooked actuality; an unnoticed birth.

It would take another 42 years before a barrister from the city of Swansea in Wales, William Robert Grove QC, developed the first operational fuel cell, whose essential design features can clearly be traced back to Carlisle and Nicholson’s original.

– – – –

Mouse-over link to the original papers mentioned in this post

Nicholson’s paper (begins on page 179)

– – – –

P Mander September 2015


CarnotCycle would like to say thank you to everyone who has visited this blog since its inception in August 2012.

Thermodynamics may be a niche topic on WordPress, but it’s a powerful subject with global appeal. CarnotCycle’s country statistics show that thermodynamics interests many, many people. They come to this blog from all over the world, and they keep coming.

It’s wonderful to see all this activity, but perhaps not so surprising. After all, thermodynamics has played – and continues to play – a major role in shaping our world. It can be a difficult subject, but time spent learning about thermodynamics is never wasted. It enriches knowledge and empowers the mind.

– – – –

Anthony Carlisle (left) and William Nicholson, London, May 1800

Anthony Carlisle (left) and William Nicholson, London, May 1800

The rise of physical chemistry in the 19th century has at its root two closely connected events which took place in the final year of the 18th century. In 1800, Alessandro Volta in Lombardy invented an early form of battery, known as the Voltaic pile, which Messrs. Carlisle and Nicholson in England promptly employed to discover electrolysis.

Carlisle and Nicholson’s discovery that electricity can decompose water into hydrogen and oxygen caused as big a stir as any scientific discovery ever made. It demonstrated the existence of a relationship between electricity and the chemical elements, to which Michael Faraday would give quantitative expression in his two laws of electrolysis in 1834. Faraday also introduced the term ‘ion’, a little word for a big idea that Arrhenius, Ostwald and van ‘t Hoff would later use to create the foundations of modern physical chemistry in the 1880s.

About this post

The story of Carlisle and Nicholson’s discovery properly begins with a letter that Volta wrote on March 20th, 1800 to the President of the Royal Society in London, Sir Joseph Banks. The leaking of that letter (which contained confidential details of the construction of the Voltaic pile) to among others Anthony Carlisle, forms the narrative of my previous post “The curious case of Volta’s leaked letter”.

This post is concerned with the construction details themselves, which have their own story to tell, and the experimental activities of Messrs. Carlisle and Nicholson after they had seen the letter, which were reported in July 1800 by Nicholson in The Journal of Natural Philosophy, Chemistry & the Arts – a publication that Nicholson himself owned.

The Voltaic pile

“The apparatus to which I allude, and which will no doubt astonish you, is only the assemblage of a number of good conductors of different kinds arranged in a certain manner.”
Alessandro Volta’s letter to Joseph Banks, introducing the Voltaic pile

Volta’s arrangement comprised a pair of different metals in contact (Z = Zinc, A = Silver), followed by a piece of cloth or other material soaked in a conducting liquid; this ‘module’ could be repeated an arbitrary number of times to build a pile in the manner illustrated below.

cn02

The Voltaic Pile: Volta’s own illustration enclosed with the letter to Banks

Volta believed the electrical current was excited by the mere contact of two different metals, and that the liquid-soaked material simply conducted the electricity from one metal pair to the next. This explains why Volta’s illustration shows the metals always in pairs – note the silver disc below the zinc at the bottom of the pile and a zinc disc above the silver at the top.

It was later shown that these terminal discs are unnecessary: the actual electromotive unit is zinc-electrolyte-silver. Volta’s arrangement can therefore be seen as a happy accident, in that his mistaken belief regarding the generation of electromotive force led him to the correct arrangement of repeated electrochemical cells, in which the terminal discs act merely as connectors for the external circuit wires.

Volta’s pile thus contained one less generating unit than he thought; it also caused the association of the two metals with the positive and negative poles of the battery to be reversed.

– – – –

Enter Mr. Carlisle

cn03

London’s Soho Square in the early 19th century. Animals were often driven to market through the square.

The president of the Royal Society, Sir Joseph Banks, lived in a house at No.32 Soho Square. Here he entertained all the leading members of the scientific establishment, and it was here in April 1800 that he yielded to temptation and disclosed the contents of Signor Volta’s confidential letter to certain chosen acquaintances. Among them was another resident of Soho Square, the fashionable surgeon Anthony Carlisle, who had just moved in at No.12.

Volta’s announcement of his invention made an instant impression on Carlisle, who immediately arranged for his friend the chemist William Nicholson to look over the letter with him, after which Carlisle set about constructing the apparatus according to the instructions in Volta’s letter.

Nicholson records in his paper that by 30th April 1800, Carlisle had completed the construction of a pile “consisting of 17 half crowns, with a like number of pieces of zinc, and of pasteboard, soaked in salt water”. Using coinage for the silver discs was smart thinking by Carlisle – with a diameter of 1.3 inches (3.3 cm), the half crown was an ideal size for the purpose, and was made of solid silver.

cn04

Silver half crown, diameter 1.3 inches

From Nicholson’s account, it seems likely that Carlisle obtained a pound (approx. ½ kilo) of zinc from a metal dealer called John Tappenden who traded from premises just opposite the church of Saint Vedast Foster Lane, off Cheapside in the City of London. A pound of zinc was enough to make 20 discs of the diameter of a half crown.

Having constructed the pile exactly according to Volta’s illustration above, Carlisle and Nicholson were ready to begin their experiments. But before describing their work, it is pertinent to draw attention to the way in which they approached their program of research, which was quite unlike that of Volta.

– – – –

Differences in approach

Alessandro Volta’s letter to Joseph Banks, apart from briefly detailing the construction of the pile, comprises a lengthy account of electric shocks administered to various parts of the human anatomy and the nature of the resulting sensations.

Volta does first prove with a charging condenser that the pile generates electricity, but having ascertained this fact, he makes no further observations on the pile, other than asserting that the device has “an inexhaustible charge, a perpetual action” and later commenting: “This endless circulation of the electric fluid (this perpetual motion) may appear paradoxical and even inexplicable, but it is no less true and real;”

cn05

One of Volta’s arrangements, using electrodes dipped in bowls of water for delivering electric shocks to the hands. If Volta had just put both electrodes in one bowl, he would have discovered electrolysis.

Volta appears not to have observed that the zinc discs quickly oxidise during operation; perhaps it was because he enclosed the pile in wax to prevent it from drying out. But nonetheless it seems strange that Volta did not discover during the course of his many experiments that the zinc discs do not have an unlimited lifetime.

William Nicholson also found it strange, commenting in his paper, “I cannot here look back without some surprise and observe that … the rapid oxidation of the zinc should constitute no part of his [Volta’s] numerous observations.”

Reading Volta’s communication to Banks, one is struck by the brevity of the text pertaining to his fabulous invention, and contrarily, the abundant descriptions of the shocks he administered with it. Volta is demonstrably more occupied with how humans experience the shocks that the pile delivers, than with the pile itself.

With Carlisle and Nicholson, the situation is very much the reverse. Having given themselves an obligatory shock with their newly-built machine, the attention immediately shifts to the pile itself. Their experiments and attendant reasoning show an approach that is more analytical in character.

– – – –

The path to discovery

On May 1st, 1800, Carlisle and Nicholson set up their pile – most likely in Carlisle’s house at 12 Soho Square – and began by forming a circuit with a wire and passing a current through it. To assist contact with the wire, a drop of river water was placed on the uppermost disc. As soon as this was done, Nicholson records

“Mr. Carlisle observed a disengagement of gas round the touching wire. This gas, though very minute in quantity, evidently seemed to me to have the smell afforded by hydrogen”

It is amazing that Nicholson was able to identify hydrogen from such a minute sample. But even more amazing was the thought that occurred to him next

“This [release of hydrogen gas], with some other facts, led me to propose to break the circuit by the substitution of a tube of water between two wires.”

Nicholson does not say what those other facts are, but he does record that on the first appearance of hydrogen gas, both he and Carlisle suspected that the gas stemmed from the decomposition of water by the electric current. Following that wonderfully intuitive piece of reasoning, Nicholson’s suggestion can be seen as a natural next step in their investigation.

cn06

William Nicholson (1753-1815)

On 2nd May, Carlisle and Nicholson began their experiment using brass wires in a tube filled with river water. A fine stream of bubbles, identifiable as hydrogen, immediately arose from the wire attached to the zinc disc, while the wire attached to the silver disc became tarnished and blackened by oxidation.

This was an unexpected result. Why was the oxygen, presumably formed at the same place as the hydrogen, not evolved at the same wire? Why and how does the oxygen apparently burrow through the water to the other wire where it produces oxidation of the metal? This finding, which according to Nicholson “seems to point at some general law of the agency of electricity in chemical operations” was to occupy physical chemists for the next 100 years…

Meanwhile, Carlisle and Nicholson responded to their new experimental finding with another wonderfully intuitive piece of reasoning. What would be the effect, they asked, of using electrodes made from a metal that resisted oxidation, such as platinum?

Immediately they set about finding the answer. With electrodes fashioned from platinum wire they observed a plentiful stream of bubbles from the wire attached to the zinc disc and a less plentiful stream from the wire attached to the silver disc. No tarnishing of the latter wire was seen. Nicholson wrote

“It was natural to conjecture, that the larger stream was hydrogen, and the smaller oxygen.”

The conjecture was correct. On a table top in Soho Square, Carlisle and Nicholson had successfully decomposed water into its constituent gases by the use of the Voltaic pile, and had thereby discovered electrolysis – a technique which was to prove of immeasurable importance to industry.

vol04

Anthony Carlisle (1768-1840)

– – – –

Quantitative analysis

Carlisle and Nicholson realised that the decomposition of water using platinum wires “offered a means of obtaining the gases separate from each other”. This not only provided a new way of producing these gases, but also opened up a new avenue of analysis. By measuring the relative volumes of hydrogen and oxygen evolved from the wires, they could compare their result with known data for water. [It should be noted that Carlisle and Nicholson did not have the benefit of Avogadro’s law, which was not formulated until 1811].

Carlisle and Nicholson subjected water to electrolysis for 13 hours, after which they determined the weight of water displaced by each gas in the respective tubes. The weights were in the proportion 142:72 in respect of hydrogen and oxygen; this is very close to the whole number ratio of 2:1 which was known to be the proportions in which these gases combine to produce water. Here then was quantitative evidence that the hydrogen and oxygen observed in Carlisle and Nicholson’s electrolytic cell originated from the decomposition of water.

– – – –

The experimental observations – explained

It was that drop of water placed on the uppermost disc to assist contact with the metal wire that opened the path to discovery. The fact that gas was formed “round the touching wire” indicates that the contact was intermittent: when the wire was in contact with the water drop but not the uppermost disc, a miniature electrolytic cell was formed and hydrogen gas was evolved.

Illustrating this graphically requires some qualifying explanation, since as already mentioned the terminal discs of the Voltaic pile assembled according to Volta’s instructions were unnecessary, and acted merely as conductors. Electrochemically, the uppermost disc of Carlisle and Nicholson’s Voltaic pile was a silver cathode, connected to the water drop via a zinc disc; the lowest disc in the pile was a zinc anode, which via an interposed silver disc was connected to the water drop via an unspecified metal wire. The electrochemical processes can be illustrated as follows

cn07

Carlisle and Nicholson’s first experiment, May 1st, 1800

The drop of water shown in blue acted as an electrolytic cell supplied by a zinc anode (the uppermost disc) and an unspecified metal cathode (the wire). When current was passed through this cell at moments when the wire lost contact with the zinc disc, reduction of hydrogen ions produced bubbles of hydrogen at the cathode, i.e. around the wire, as Carlisle observed. At the anode, the oxygen formed would have immediately oxidised the zinc with no visible evolution of gas.

The evolution of hydrogen gas between each pair of discs in the Voltaic pile, i.e. on the side in communication with the electrolyte, was also noted in Nicholson’s paper, as was the erosion of the zinc anode.

– – – –

And so to the experimental set-up with which Carlisle and Nicholson successfully decomposed water into its constituent gases by the use of the Voltaic pile, and thereby discovered electrolysis. Electrochemically, the uppermost disc in the pile was a silver cathode, which via an interposed zinc disc was connected to the water in the tube via a platinum electrode; the lowest disc in the pile was a zinc anode, which via an interposed silver disc was connected to the water in the tube via a platinum electrode. The electrochemical processes can be illustrated as follows

cn08

Carlisle and Nicholson’s electrolysis of water, May 1800

The tube of water shown in blue acted as an electrolytic cell supplied by a platinum anode and cathode. When current was passed through this cell, reduction of hydrogen ions produced bubbles of hydrogen at the cathode, while the oxidation of water produced hydrogen ions and bubbles of oxygen at the anode.

The evolution of hydrogen gas between each pair of discs in the Voltaic pile, i.e. on the side in communication with the electrolyte, was also noted in Nicholson’s paper, as was the erosion of the zinc anode.

– – – –

Mouse-over links to original papers mentioned in this post

Volta’s letter to Banks (begins on page 289)

Nicholson’s paper (begins on page 179)

– – – –

P Mander September 2015

vol05

Sir Joseph Banks, President of the Royal Society in London, sat in the splendour of his office in Somerset House. It was an April morning in the year 1800. The clatter of horse-drawn carriages in the Strand rose to his window, but he did not notice; his attention was elsewhere. Staring into space, he clutched a letter that had been delivered to him that very morning. Dated March 20th and written in French, it had been sent from Como in Lombardy by an Italian professor of experimental physics named Alessandro Volta.

Professor Volta’s letter was clearly attended by some haste, since he had dispatched the first four pages in advance of the remainder, which was to follow. The subject matter was experiments on electricity, and the first pages of Volta’s letter to Banks described the invention of an apparatus “which will no doubt astonish you”.

vol02

Alessandro Volta (1745-1827) and his amazing invention

On that April morning in London, Banks read the letter and was duly astonished. Volta’s apparatus, consisting of a series of discs of two different metals in contact separated by brine-soaked pasteboard, was capable of generating a continuous current of electricity. This was a world apart from the static electricity of the celebrated Leyden jar and indeed a most astonishing discovery; no wonder Volta was so anxious to communicate it without delay to Banks and thereby to the Royal Society – of which Volta was also a fellow.

Still clutching the letter, Joseph Banks regained his composure and collected his thoughts. He must of course arrange for the letter to be read to the Society, after which it would duly appear in print in the Society’s Philosophical Transactions.

In the meantime, Banks was naturally obliged to keep Volta’s discovery confidential. But then again, with a such an astonishing discovery as this, it was sorely tempting to show Signor Volta’s letter – in the strictest confidence of course – to certain individuals in his large circle of scientific acquaintances, who would surely be fascinated by its contents. What could be the harm in that?

– – – –

Yielding to temptation

The state of mind into which Sir Joseph Banks was propelled by Professor Volta’s letter was pertinently observed (albeit almost a century later) by Oscar Wilde in his play Lady Windermere’s Fan, in which Lord Darlington famously quips “I can resist everything but temptation.”

vol03

32 Soho Square (right), the London home of Sir Joseph Banks

The London home of Joseph Banks, in Soho Square, was the centre of bustling scientific activity and attracted all the leading members of the scientific establishment. Within a month of receiving Volta’s letter, Banks had yielded to temptation and shown it to a number of acquaintances.

Among them was Anthony Carlisle, a fashionable London surgeon who was shortly to display remarkable abilities in the realm of physical chemistry. Having perused the letter, Carlisle immediately arranged for his friend the chemist William Nicholson to look over the pages with him, after which Carlisle set about constructing the apparatus according to Volta’s instructions – the fabled instrument we now call the Voltaic Pile.

vol04

Sir Anthony Carlisle (1768-1840), painted by Henry Bone in 1827

So within a month of Volta’s hastened communication to Banks, the details of the construction of the Voltaic Pile had been leaked to, among others, Carlisle and Nicholson, enabling the latter to begin experiments with Volta’s apparatus that would lead to their privileged discovery of electrolysis, before Volta’s letter had even been read to – let alone published by – the Royal Society.

– – – –

The chronology of the case

1800

March 20th
Volta sends a letter (in French) from Como, Lombardy, to Sir Joseph Banks at the Royal Society in London, announcing his invention of the Voltaic pile.

April
Banks leaks the contents of Volta’s letter to several acquaintances, including Anthony Carlisle, who arranges for William Nicholson to view the letter.

May
Carlisle and Nicholson construct a Voltaic Pile according to Volta’s instructions. With this apparatus they discover the electrolysis of water into hydrogen and oxygen.

June 26th
Volta’s letter is read to the Royal Society.

July
William Nicholson publishes a paper in The Journal of Natural Philosophy, Chemistry & the Arts, announcing the discovery of electrolysis by Anthony Carlisle and himself, using the Voltaic Pile.

September
Volta’s letter announcing his invention of the Voltaic pile is published in French in the Philosophical Transactions of the Royal Society, and in English in The Philosophical Magazine.

– – – –

Mouse-over links to original papers mentioned in this post

Volta’s letter to Banks (begins on page 289)

Nicholson’s paper (begins on page 179)

– – – –

P Mander August 2015