Archive for the ‘thermodynamics’ Category

tp01

A thermodynamic system doesn’t have to be big. Although thermodynamics was originally concerned with very large objects like steam engines for pumping out coal mines, thermodynamic thinking can equally well be applied to very small systems consisting of say, just a few atoms.

Of course, we know that very small systems play by different rules – namely quantum rules – but that’s ok. The rules are known and can be applied. So let’s imagine that our thermodynamic system is an idealized solid consisting of three atoms, each distinguishable from the others by its unique position in space, and each able to perform simple harmonic oscillations independently of the others. At the absolute zero of temperature, the system will have no thermal energy, one microstate and zero entropy, with each atom in its vibrational ground state.

Harmonic motion is quantized, such that if the energy of the ground state is taken as zero and the energy of the first excited state as ε, then 2ε is the energy of the second excited state, 3ε is the energy of the third excited state, and so on. Suppose that from its thermal surroundings our 3-atom system absorbs one unit of energy ε, sufficient to set one of the atoms oscillating. Clearly, one unit of energy can be distributed among three atoms in three different ways – 100, 010, 001 – or in more compact notation [100|3].

Now let’s consider 2ε of absorbed energy. Our system can do this in two ways, either by promoting one oscillator to its second excited state, or two oscillators to their first excited state. Each of these energy distributions can be achieved in three ways, which we can write [200|3], [110|3]. For 3ε of absorbed energy, there are three distributions: [300|3], [210|6], [111|1].

Summarizing the above information

Energy E (in units of ε) Total microstates W Ratio of successive W’s
0 1
1 3 3
2 6 2
3 10 1⅔

 

The summary shows that as E increases, so does W. This is to be expected, since as W increases, the entropy S (= k log W) increases. In other words E and S increase or decrease together; the ratio ∂E/∂S is always positive. Since ∂E/∂S = T, the finding that E and S increase or decrease together is equivalent to saying that the absolute temperature of the system is always positive.

– – – –

Adding an extra particle

It is instructive to compare the distribution of energy among three oscillators (N =3)*

E = 0: [000|1]
E = 1: [100|3]
E = 2: [200|3], [110|3]
E = 3: [300|3], [210|6], [111|1]

with the distribution among four oscillators (N = 4)*

E = 0: [0000|1]
E = 1: [1000|4]
E = 2: [2000|4], [1100|6]
E = 3: [3000|4], [2100|12], [1110|4]

*For any single distribution among N oscillators where n0, n1,n2 … represent the number of oscillators in the ground state, first excited state, second excited state etc, the number of microstates is given by

tp02

It is understood that 0! = 1. Derivation of the formula is given in Appendix I.

For both the 3-oscillator and 4-oscillator systems, the first excited state is never less populated than the second, and the second excited state is never less populated than the third. Population is graded downward and the ratios n1/n0 > n2/n1 > n3/n2 are less than unity.

Example calculations for N = 4, E = 3:

tp03

tp04

tp05

Comparisons can also be made of a single ratio across distributions and between systems. For example the values of n1/n0 for E = 0, 1, 2, 3 are

(N = 4) : 0, ⅓, ½, ⅗
(N = 3) : 0, ½, ⅔, ¾

Since for a macroscopic system

tp06

this implies that for a given value of E the 4-oscillator system is colder than the 3-oscillator system. The same conclusion can be reached by looking at the ratio of successive W’s for the 4-oscillator system sharing 0 to 3 units of thermal energy

Energy E (in units of ε) Total microstates W Ratio of successive W’s
0 1
1 4 4
2 10
3 20 2

 

For the 4-oscillator system the ratios of successive W’s are larger than the corresponding ratios for the 3-oscillator system. The logarithms of these ratios are inversely proportional to the absolute temperature, so the larger the ratio the lower the temperature.

– – – –

Finite differences

The differences between successive W’s for a 4-oscillator system are the values for a 3-oscillator system

W for (N =4) : 1, 4, 10, 20
Differences : 3, 6, 10

Likewise the differences between successive W’s for a 3-oscillator system and a 2-oscillator system

W for (N =3) : 1, 3, 6, 10
Differences : 2, 3, 4

Likewise for the differences between successive W’s for a 2-oscillator system and a 1-oscillator system

W for (N =2) : 1, 2, 3, 4
Differences : 1, 1, 1

This implies that W for the 4-particle system can be expressed as a cubic in n, and that W for the 3-particle system can be expressed as a quadratic in n etc. Evaluation of coefficients leads to the following formula progression

For N = 1

tp07

For N = 2

tp08

For N = 3

tp09

For N = 4

tp10

It appears that in general

tp11

Since n = E/ε and ε = hν, the above equation can be written

tp12

For a system of oscillators this formula describes the functional dependence of W microstates on the size of the particle ensemble (N), its energy (E), the mechanical frequency of its oscillators (ν) and Planck’s constant (h).

– – – –

Appendix I

Formula to be derived

For any single distribution among N oscillators where n0, n1,n2 … represent the number of oscillators in the ground state, first excited state, second excited state etc, the number of microstates is given by

tp02

Derivation

In combinatorial analysis, the above comes into the category of permutations of sets with the possible occurrence of indistinguishable elements.

Consider the distribution of 3 units of energy across 4 oscillators such that one oscillator has two units, another has the remaining one unit, and the other two oscillators are in the ground state: {2100}

If each of the four numbers was distinct, there would be 4! possible ways to arrange them. But the two zeros are indistinguishable, so the number of ways is reduced by a factor of 2! The number of ways to arrange {2100} is therefore 4!/2! = 12.

1 and 2 occur only once in the above set, and the occurrence of 3 is zero. This does not result in a reduction in the number of possible ways to arrange {2100} since 1! = 1 and 0! = 1. Their presence in the denominator will have no effect, but for completeness we can write

4!/2!1!1!0!

to compute the number of microstates for the single distribution E = 3, N = 4, {2100} where n0 = 2, n1 = 1, n2 = 1 and n3 = 0.

In the general case, the formula for the number of microstates for a single energy distribution of E among N oscillators is

tp02

where the terms in the denominator are as defined above.

– – – –

P Mander April 2016

Advertisements

arr00

arr09

The Arrhenius equation explains why chemical reactions generally go much faster when you heat them up. The equation was actually first given by the Dutch physical chemist JH van ‘t Hoff in 1884, but it was the Swedish physical chemist Svante Arrhenius (pictured above) who in 1889 interpreted the equation in terms of activation energy, thereby opening up an important new dimension to the study of reaction rates.

– – – –

Temperature and reaction rate

The systematic study of chemical kinetics can be said to have begun in 1850 with Ludwig Wilhelmy’s pioneering work on the kinetics of sucrose inversion. Right from the start, it was realized that reaction rates showed an appreciable dependence on temperature, but it took four decades before real progress was made towards quantitative understanding of the phenomenon.

In 1889, Arrhenius penned a classic paper in which he considered eight sets of published data on the effect of temperature on reaction rates. In each case he showed that the rate constant could be represented as an explicit function of the absolute temperature:

arr01

where both A and C are constants for the particular reaction taking place at temperature T. In his paper, Arrhenius listed the eight sets of published data together with the equations put forward by their respective authors to express the temperature dependence of the rate constant. In one case, the equation – stated in logarithmic form – was identical to that proposed by Arrhenius

arr02

where T is the absolute temperature and a and b are constants. This equation was published five years before Arrhenius’ paper in a book entitled Études de Dynamique Chimique. The author was J. H. van ‘t Hoff.

– – – –

Dynamic equilibrium

In the Études of 1884, van ‘t Hoff compiled a contemporary encyclopædia of chemical kinetics. It is an extraordinary work, containing all that was previously known as well as a great deal that was entirely new. At the start of the section on chemical equilibrium he states (without proof) the thermodynamic equation, sometimes called the van ‘t Hoff isochore, which quantifies the displacement of equilibrium with temperature. In modern notation it reads:

arr03

where Kc is the equilibrium constant expressed in terms of concentrations, ΔH is the heat of reaction and T is the absolute temperature. In a footnote to this famous and thermodynamically exact equation, van ‘t Hoff builds a bridge from thermodynamics to kinetics by advancing the idea that a chemical reaction can take place in both directions, and that the thermodynamic equilibrium constant Kc is in fact the quotient of the kinetic velocity constants for the forward (k1) and reverse (k-1) reactions

wil13
wil14

Substituting this quotient in the original equation leads immediately to

arr04

van ‘t Hoff then argues that the rate constants will be influenced by two different energy terms E1 and E-1, and splits the above into two equations

arr05

where the two energies are such that E1 – E-1 = ΔH

In the Études, van ‘t Hoff recognized that ΔH might or might not be temperature independent, and considered both possibilities. In the former case, he could integrate the equation to give the solution

arr06

From a starting point in thermodynamics, van ‘t Hoff engineered this kinetic equation through a characteristically self-assured thought process. And it was this equation that the equally self-assured Svante Arrhenius seized upon for his own purposes, expanding its application to explain the results of other researchers, and enriching it with his own idea for how the equation should be interpreted.

– – – –

Activation energy

It is a well-known result of the kinetic theory of gases that the average kinetic energy per mole of gas (EK) is given by

arr07

Since the only variable on the RHS is the absolute temperature T, we can conclude that doubling the temperature will double the average kinetic energy of the molecules. This set Arrhenius thinking, because the eight sets of published data in his 1889 paper showed that the effect of temperature on the rates of chemical processes was generally much too large to be explained on the basis of how temperature affects the average kinetic energy of the molecules.

The clue to solving this mystery was provided by James Clerk Maxwell, who in 1860 had worked out the distribution of molecular velocities from the laws of probability. Maxwell’s distribution law enables the fraction of molecules possessing a kinetic energy exceeding some arbitrary value E to be calculated.

It is convenient to consider the distribution of molecular velocities in two dimensions instead of three, since the distribution law so obtained gives very similar results and is much simpler to apply. At absolute temperature T, the proportion of molecules for which the kinetic energy exceeds E is given by

arr08

where n is the number of molecules with kinetic energy greater than E, and N is the total number of molecules. This is exactly the exponential expression which occurs in the velocity constant equation derived by van ‘t Hoff from thermodynamic principles, which Arrhenius showed could be fitted to temperature dependence data from several published sources.

Compared with the average kinetic energy calculation, this exponential expression yields very different results. At 1000K, the fraction of molecules having a greater energy than, say, 80 KJ is 0.0000662, while at 2000K the fraction is 0.00814. So the temperature change which doubles the number of molecules with the average energy will increase the number of molecules with E > 80 KJ by a factor of more than a hundred.

Here was the clue Arrhenius was seeking to explain why increased temperature had such a marked effect on reaction rate. He reasoned it was because molecules needed sufficiently more energy than the average – the activation energy E – to undergo reaction, and that the fraction of these molecules in the reaction mix was an exponential function of temperature.

– – – –

The meaning of A

But back to the Arrhenius equation

arr09

I have always thought that calling the constant A the ‘pre-exponential factor’ is a singularly pointless label. One could equally write the equation as

arr10

and call it the ‘post-exponential factor’. The position of A in relation to the exponential factor has no relevance.

A clue to the proper meaning of A is to note that e^(–E/RT) is dimensionless. The units of A are therefore the same as the units of k. But what are the units of k?

The answer depends on whether one’s interest area is kinetics or thermodynamics. In kinetics, the concentration of chemical species present at equilibrium is generally expressed as molar concentration, giving rise to a range of possibilities for the units of the velocity constant k.

In thermodynamics however, the dimensions of k are uniform. This is because the chemical potential of reactants and products in any arbitrarily chosen state is expressed in terms of activity a, which is defined as a ratio in relation to a standard state and is therefore dimensionless.

When the arbitrarily chosen conditions represent those for equilibrium, the equilibrium constant K is expressed in terms of reactant (aA + bB + …) and product (mM + nN + …) activities

arr11

where the subscript e indicates that the activities are those for the system at equilibrium.

As students we often substitute molar concentrations for activities, since in many situations the activity of a chemical species is approximately proportional to its concentration. But if an equation is arrived at from consideration of the thermodynamic equilibrium constant K – as the Arrhenius equation was – it is important to remember that the associated concentration terms are strictly dimensionless and so the reaction rate, and therefore the velocity constant k, and therefore A, has the units of frequency (t^-1).

OK, so back again to the Arrhenius equation

arr09

We have determined the dimensions of A; now let us turn our attention to the role of the dimensionless exponential factor. The values this term may take range between 0 and 1, and specifically when E = 0, e^(–E/RT) = 1. This allows us to assign a physical meaning to A since when E = 0, A = k. We can think of A as the velocity constant when the activation energy is zero – in other words when each collision between reactant molecules results in a reaction taking place.

Since there are zillions of molecular collisions taking place every second just at room temperature, any reaction in these circumstances would be uber-explosive. So the exponential term can be seen as a modifier of A whose value reflects the range of reaction velocity from extremely slow at one end of the scale (high E/low T) to extremely fast at the other (low E/high T).

– – – –

P Mander September 2016

CarnotCycle is honored to announce that Rutgers, The State University of New Jersey, has included this thermodynamics blog on the reading list for students of physical chemistry. Founded in 1766, Rutgers is the eighth oldest college in the United States and is the largest institution for higher education in New Jersey.

CarnotCycle is committed to making topics in this area of science accessible to students worldwide. Thermodynamics has played – and continues to play – a major role in shaping our world. It can be a difficult subject, but time spent learning about thermodynamics is never wasted. It enriches knowledge and empowers the mind.

Link: http://andromeda.rutgers.edu/~huskey/345f17_lec.html

– – – –

Relative humidity (RH) and temperature (T) data from an RH&T sensor like the DHT22 can be used to compute not only absolute humidity AH but also dew point temperature TD

There has been a fair amount of interest in my formula which computes AH from measured RH and T, since it adds value to the output of RH&T sensors. To further extend this value, I have developed another formula which computes dew point temperature TD from measured RH and T.

Formula for computing dew point temperature TD

In this formula (P Mander 2017) the measured temperature T and the computed dew point temperature TD are expressed in degrees Celsius, and the measured relative humidity RH is expressed in %

gif format (decimal separator = .)

gif format (decimal separator = ,)

jpg format (decimal separator = .)

jpg format (decimal separator = ,)

– – – –

Strategy for computing TD from RH and T

1. The dew point temperature TD is defined in the following relation where RH is expressed in %

2. To obtain values for Psat, we can use the Bolton formula[REF, eq.10] which generates saturated vapor pressure Psat (hectopascals) as a function of temperature T (Celsius)

These formulas are stated to be accurate to within 0.1% over the temperature range –30°C to +35°C

3. Substituting in the first equation yields

Taking logarithms

Rearranging

Separating TD terms on one side yields

– – – –

Spreadsheet formula for computing TD from RH and T

1) Set up data entry cells for RH in % and T in degrees Celsius.

2) Depending on whether your spreadsheet uses a full point (.) or comma (,) for the decimal separator, copy the appropriate formula below and paste it into the computation cell for TD.

Formula for TD (decimal separator = .)

=243.5*(LN(RH/100)+((17.67*T)/(243.5+T)))/(17.67-LN(RH/100)-((17.67*T)/(243.5+T)))

Formula for TD (decimal separator = ,)

=243,5*(LN(RH/100)+((17,67*T)/(243,5+T)))/(17,67-LN(RH/100)-((17,67*T)/(243,5+T)))

3) Replace T and RH in the formula with the respective cell references. (see comment)

Your spreadsheet is now complete. Enter values for RH and T, and the TD computation cell will return the dew point temperature. If an object whose temperature is at or below this temperature is present in the local space, the thermodynamic conditions are satisfied for water vapor to condense (or freeze if TD is below 0°C) on the surface of the object.

– – – –

P Mander August 2017

From the perspective of classical thermodynamics, osmosis has a rather unclassical history. Part of the reason for this, I suspect, is that osmosis was originally categorised under the heading of biology. I can remember witnessing the first practical demonstration of osmosis in a biology class, the phenomenon being explained in terms of pores (think invisible holes) in the membrane that were big enough to let water molecules through, but not big enough to let sucrose molecules through. It was just like a kitchen sieve, we were told. It lets the fine flour pass through but not clumps. This was very much the method of biology in my day, explaining things in terms of imagined mechanism and analogy.

And it wasn’t just in my day. In 1883, JH van ‘t Hoff, an able theoretician and one of the founders of the new discipline of physical chemistry, became suddenly convinced that solutions and gases obeyed the same fundamental law, pv = RT. Imagined mechanism swiftly followed. In van ‘t Hoff’s interpretation, osmotic pressure depended on the impact of solute molecules against the semipermeable membrane because solvent molecules, being present on both sides of the membrane through which they could freely pass, did not enter into consideration.

It all seemed very plausible, especially when van ‘t Hoff used the osmotic pressure measurements of the German botanist Wilhelm Pfeffer to compute the value of R in what became known as the van ‘t Hoff equation

ts04

where Π is the osmotic pressure, and found that the calculated value for R was almost identical with the familiar gas constant. There really did seem to be a parallelism between the properties of solutions and gases.

ae01

JH van ‘t Hoff (1852-1911)

The first sign that there was anything amiss with the so-called gaseous theory of solutions came in 1891 when van ‘t Hoff’s close colleague Wilhelm Ostwald produced unassailable proof that osmotic pressure is independent of the nature of the membrane. This meant that hypothetical arguments as to the cause of osmotic pressure, such as van ‘t Hoff had used as the basis of his theory, were inadmissible.

A year later, in 1892, van ‘t Hoff changed his stance by declaring that the mechanism of osmosis was unimportant. But this did not affect the validity of his osmotic pressure equation ΠV = RT. After all, it had been shown to be in close agreement with experimental data for very dilute solutions.

It would be decades – the 1930s in fact – before the van ‘t Hoff equation’s formal identity with the ideal gas equation was shown to be coincidental, and that the proper thermodynamic explanation of osmotic pressure lay elsewhere.

But long before the 1930s, even before Wilhelm Pfeffer began his osmotic pressure experiments upon which van ‘t Hoff subsequently based his ideas, someone had already published a thermodynamically exact rationale for osmosis that did not rely on any hypothesis as to cause.

That someone was the American physicist Josiah Willard Gibbs. The year was 1875.

gibbs

J. Willard Gibbs (1839-1903)

– – – –

Osmosis without mechanism

It is a remarkable feature of Gibbs’ On the Equilibrium of Heterogeneous Substances that having introduced the concept of chemical potential, he first considers osmotic forces before moving on to the fundamental equations for which the work is chiefly known. The reason is Gibbs’ insistence on logical order of presentation. The discussion of chemical potential immediately involves equations of condition, among whose different causes are what Gibbs calls a diaphragm, i.e. a semipermeable membrane. Hence the early appearance of the following section

to02

In equation 77, Gibbs presents a new way of understanding osmotic pressure. He makes no hypotheses about how a semipermeable membrane might work, but simply states the equations of condition which follow from the presence of such a membrane in the kind of system he describes.

This frees osmosis from considerations of mechanism, and explains it solely in terms of differences in chemical potential in components which can pass the diaphragm while other components cannot.

In order to achieve equilibrium between say a solution and its solvent, where only the solvent can pass the diaphragm, the chemical potential of the solvent in the fluid on both sides of the membrane must be the same. This necessitates applying additional pressure to the solution to increase the chemical potential of the solvent in the solution so it equals that of the pure solvent, temperature remaining constant. At equilibrium, the resulting difference in pressure across the membrane is the osmotic pressure.

Note that increasing the pressure always increases the chemical potential since

to03

is always positive (V1 is the partial molar volume of the solvent in the solution).

– – – –

Europe fails to notice (almost)

Gibbs published On the Equilibrium of Heterogeneous Substances in Transactions of the Connecticut Academy. Choosing such an obscure journal (seen from a European perspective) clearly would not attract much attention across the pond, but Gibbs had a secret weapon. He had a mailing list of the world’s greatest scientists to which he sent reprints of his papers.

One of the names on that list was James Clerk Maxwell, who instantly appreciated Gibbs’ work and began to promote it in Europe. On Wednesday 24 May 1876, the year that ‘Equilibrium’ was first published, Maxwell gave an address at the South Kensington Conferences in London on the subject of Gibbs’ development of the doctrine of available energy on the basis of his new concept of the chemical potentials of the constituent substances. But the audience did not share Maxwell’s enthusiasm, or in all likelihood share his grasp of Gibbs’ ideas. When Maxwell tragically died three years later, Gibbs’ powerful ideas lost their only real champion in Europe.

It was not until 1891 that interest in Gibbs masterwork would resurface through the agency of Wilhelm Ostwald, who together with van ‘t Hoff and Arrhenius were the founders of the modern school of physical chemistry.

ts07

Wilhelm Ostwald (1853-1932) He not only translated Gibbs’ masterwork into German, but also produced a profound proof – worthy of Sadi Carnot himself – that osmotic pressure must be independent of the nature of the semipermeable membrane.

Although perhaps overshadowed by his colleagues, Ostwald had a talent for sensing the direction that the future would take and was also a shrewd judge of intellect – he instinctively felt that there were hidden treasures in Gibbs’ magnum opus. After spending an entire year translating ‘Equilibrium’ into German, Ostwald wrote to Gibbs:

“The translation of your main work is nearly complete and I cannot resist repeating here my amazement. If you had published this work over a longer period of time in separate essays in an accessible journal, you would now be regarded as by far the greatest thermodynamicist since Clausius – not only in the small circle of those conversant with your work, but universally—and as one who frequently goes far beyond him in the certainty and scope of your physical judgment. The German translation, hopefully, will more secure for it the general recognition it deserves.”

The following year – 1892 – another respected scientist sent a letter to Gibbs regarding ‘Equilibrium’. This time it was the British physicist, Lord Rayleigh, who asked Gibbs:

“Have you ever thought of bringing out a new edition of, or a treatise founded upon, your “Equilibrium of Het. Substances.” The original version though now attracting the attention it deserves, is too condensed and too difficult for most, I might say all, readers. The result is that as has happened to myself, the idea is not grasped until the subject has come up in one’s own mind more or less independently.”

Rayleigh was probably just being diplomatic when he remarked that Gibbs’ treatise was ‘now attracting the attention it deserves’. The plain fact is that nobody gave it any attention at all. Gibbs and his explanation of osmosis in terms of chemical potential was passed over, while European and especially British theoretical work centered on the more familiar and more easily understood concept of vapor pressure.

– – – –

Gibbs tries again

Although van ‘t Hoff’s osmotic pressure equation ΠV = RT soon gained the status of a law, the gaseous theory that lay behind it remained clouded in controversy. In particular, van ‘t Hoff’s deduction of the proportionality between osmotic pressure and concentration was an analogy rather than a proof, since it made use of hypothetical considerations as to the cause of osmotic pressure. Following Ostwald’s proof that these were inadmissible, the gaseous theory began to look hollow. A better theory was needed.

to04

Lord Kelvin (1824-1907) and Lord Rayleigh (1842-1919)

This was provided in 1896 by the British physicist, Lord Rayleigh, whose proof was free of hypothesis but did make use of Avogadro’s law, thereby continuing to assert a parallelism between the properties of solutions and gases. Heavyweight opposition to this soon materialized from the redoubtable Lord Kelvin. In a letter to Nature (21 January 1897) he charged that the application of Avogadro’s law to solutions had “manifestly no theoretical foundation at present” and further contended that

“No molecular theory can, for sugar or common salt or alcohol, dissolved in water, tell us what is the true osmotic pressure against a membrane permeable to water only, without taking into account laws quite unknown to us at present regarding the three sets of mutual attractions or repulsions: (1) between the molecules of the dissolved substance; (2) between the molecules of water; (3) between the molecules of the dissolved substance and the molecules of water.”

Lord Kelvin’s letter in Nature elicited a prompt response from none other than Josiah Willard Gibbs in America. Twenty-one years had now passed since James Clerk Maxwell first tried to interest Europe in the concept of chemical potentials. In Kelvin’s letter, with its feisty attack on the gaseous theory, Gibbs saw the opportunity to try again.

In his letter to Nature (18 March 1897), Gibbs opined that “Lord Kelvin’s very interesting problem concerning molecules which differ only in their power of passing a diaphragm, seems only to require for its solution the relation between density and pressure”, and highlighted the advantage of using his potentials to express van ‘t Hoff’s law:

“It will be convenient to use certain quantities which may be called the potentials of the solvent and of the solutum, the term being thus defined: – In any sensibly homogeneous mass, the potential of any independently variable component substance is the differential coefficient of the thermodynamic energy of the mass taken with respect to that component, the entropy and volume of the mass and the quantities of its other components remaining constant. The advantage of using such potentials in the theory of semi-permeable diaphragms consists partly in the convenient form of the condition of equilibrium, the potential for any substance to which a diaphragm is freely permeable having the same value on both sides of the diaphragm, and partly in our ability to express van’t Hoff law as a relation between the quantities characterizing the state of the solution, without reference to any experimental arrangement.”

But once again, Gibbs and his chemical potentials failed to garner interest in Europe. His timing was also unfortunate, since British experimental research into osmosis was soon to be stimulated by the aristocrat-turned-scientist Lord Berkeley, and this in turn would stimulate a new band of British theoreticians, including AW Porter and HL Callendar, who would base their theoretical efforts firmly on vapor pressure.

– – – –

Things Come Full Circle

As the new century dawned, van ‘t Hoff cemented his reputation with the award of the very first Nobel Prize for Chemistry “in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

The osmotic pressure law was held in high esteem, and despite Lord Kelvin’s protestations, Britain was well disposed towards the Gaseous Theory of Solutions. The idea circulating at the time was that the refinements of the ideal gas law that had been shown to apply to real gases, could equally well be applied to more concentrated solutions. As Lord Berkeley put it in the introduction to a paper communicated to the Royal Society in London in May 1904:

“The following work was undertaken with a view to obtaining data for the tentative application of van der Waals’ equation to concentrated solutions. It is evidently probable that if the ordinary gas equation be applicable to dilute solutions, then that of van der Waals, or one of analogous form, should apply to concentrated solutions – that is, to solutions having large osmotic pressures.”

Lord Berkeley’s landmark experimental studies on the osmotic pressure of concentrated solutions called renewed attention to the subject among theorists, who now had some fresh and very accurate data to work with. Alfred Porter at University College London attempted to make a more complete theory by considering the compressibility of a solution to which osmotic pressure was applied, while Hugh Callendar at Imperial College London combined the vapor pressure interpretation of osmosis with the hypothesis that osmosis could be described as vapor passing through a large number of fine capillaries in the semipermeable membrane. This was in 1908.

to05

H L Callendar (1863-1930)

So seventeen years after Wilhelm Ostwald conclusively proved that hypothetical arguments as to the cause of osmotic pressure were inadmissible, things came full circle with hypothetical arguments once more being advanced as to the cause of osmotic pressure.

And as for Gibbs, his ideas were as far away as ever from British and European Science. The osmosis papers of both Porter (1907) and Callendar (1908) are substantial in referenced content, but nowhere do either of them make any mention of Gibbs or his explanation of osmosis on the basis of chemical potentials.

There is a special irony in this, since in Callendar’s case at least, the scientific papers of J Willard Gibbs were presumably close at hand. Perhaps even on his office bookshelf. Because that copy of Gibbs’ works shown in the header photo of this post – it’s a 1906 first edition – was Hugh Callendar’s personal copy, which he signed on the front endpaper.

to06

Hugh Callendar’s signature on the endpaper of his personal copy of Gibbs’ Scientific Papers, Volume 1, Thermodynamics.

– – – –

Epilogue

Throughout this post, I have made repeated references to that inspired piece of thinking by Wilhelm Ostwald which conclusively demonstrated that osmotic pressure must be independent of the nature of the membrane.

Ostwald’s reasoning is so lucid and compelling, that one wonders why it didn’t put an end to speculation on osmotic mechanisms. But it didn’t, and hasn’t, and probably won’t.

Here is how Ostwald presented the argument in his own Lehrbuch der allgemeinen Chemie (1891). Enjoy.

ts08

“… it may be stated with certainty that the amount of pressure is independent of the nature of the membrane, provided that the membrane is not permeable by the dissolved substance. To understand this, let it be supposed that two separating partitions, A and B, formed of different membranes, are placed in a cylinder (fig. 17). Let the space between the membranes contain a solution and let there be pure water in the space at the ends of the cylinder. Let the membrane A show a higher pressure, P, and the membrane B show a smaller pressure, p. At the outset, water will pass through both membranes into the inner space until the pressure p is attained, when the passage of water through B will cease, but the passage through A will continue. As soon as the pressure in the inner space has been thus increased above p, water will be pressed out through B. The pressure can never reach the value P; water must enter continuously through A, while a finite difference of pressures is maintained. If this were realised we should have a machine capable of performing infinite work, which is impossible. A similar demonstration holds good if p>P ; it is, therefore, necessary that P=p; in other words, it follows necessarily that osmotic pressure is independent of the nature of the membrane.”

(English translation by Matthew Pattison Muir)

– – – –

P Mander July 2015