Sir Joseph Banks, President of the Royal Society in London, sat in the splendour of his office in Somerset House. It was an April morning in the year 1800. The clatter of horse-drawn carriages in the Strand rose to his window, but he did not notice; his attention was elsewhere. Staring into space, he clutched a letter that had been delivered to him that very morning. Dated March 20th and written in French, it had been sent from Como in Lombardy by an Italian professor of experimental physics named Alessandro Volta.

Professor Volta’s letter was clearly attended by some haste, since he had dispatched the first four pages in advance of the remainder, which was to follow. The subject matter was experiments on electricity, and the first pages of Volta’s letter to Banks described the invention of an apparatus “which will no doubt astonish you”.


Alessandro Volta (1745-1827) and his amazing invention

On that April morning in London, Banks read the letter and was duly astonished. Volta’s apparatus, consisting of a series of discs of two different metals in contact separated by brine-soaked pasteboard, was capable of generating a continuous current of electricity. This was a world apart from the static electricity of the celebrated Leyden jar and indeed a most astonishing discovery; no wonder Volta was so anxious to communicate it without delay to Banks and thereby to the Royal Society – of which Volta was also a fellow.

Still clutching the letter, Joseph Banks regained his composure and collected his thoughts. He must of course arrange for the letter to be read to the Society, after which it would duly appear in print in the Society’s Philosophical Transactions.

In the meantime, Banks was naturally obliged to keep Volta’s discovery confidential. But then again, with a such an astonishing discovery as this, it was sorely tempting to show Signor Volta’s letter – in the strictest confidence of course – to certain individuals in his large circle of scientific acquaintances, who would surely be fascinated by its contents. What could be the harm in that?

– – – –

Yielding to temptation

The state of mind into which Sir Joseph Banks was propelled by Professor Volta’s letter was pertinently observed (albeit almost a century later) by Oscar Wilde in his play Lady Windermere’s Fan, in which Lord Darlington famously quips “I can resist everything but temptation.”


32 Soho Square (right), the London home of Sir Joseph Banks

The London home of Joseph Banks, in Soho Square, was the centre of bustling scientific activity and attracted all the leading members of the scientific establishment. Within a month of receiving Volta’s letter, Banks had yielded to temptation and shown it to a number of acquaintances.

Among them was Anthony Carlisle, a fashionable London surgeon who was shortly to display remarkable abilities in the realm of physical chemistry. Having perused the letter, Carlisle immediately arranged for his friend the chemist William Nicholson to look over the pages with him, after which Carlisle set about constructing the apparatus according to Volta’s instructions – the fabled instrument we now call the Voltaic Pile.


Sir Anthony Carlisle (1768-1840), painted by Henry Bone in 1827

So within a month of Volta’s hastened communication to Banks, the details of the construction of the Voltaic Pile had been leaked to, among others, Carlisle and Nicholson, enabling the latter to begin experiments with Volta’s apparatus that would lead to their privileged discovery of electrolysis, before Volta’s letter had even been read to – let alone published by – the Royal Society.

– – – –

The chronology of the case


March 20th
Volta sends a letter (in French) from Como, Lombardy, to Sir Joseph Banks at the Royal Society in London, announcing his invention of the Voltaic pile.

Banks leaks the contents of Volta’s letter to several acquaintances, including Anthony Carlisle, who arranges for William Nicholson to view the letter.

Carlisle and Nicholson construct a Voltaic Pile according to Volta’s instructions. With this apparatus they discover the electrolysis of water into hydrogen and oxygen.

June 26th
Volta’s letter is read to the Royal Society.

William Nicholson publishes a paper in The Journal of Natural Philosophy, Chemistry & the Arts, announcing the discovery of electrolysis by Anthony Carlisle and himself, using the Voltaic Pile.

Volta’s letter announcing his invention of the Voltaic pile is published in French in the Philosophical Transactions of the Royal Society, and in English in The Philosophical Magazine.

– – – –

Mouse-over links to original papers mentioned in this post

Volta’s letter to Banks (begins on page 289)

Nicholson’s paper (begins on page 179)

– – – –


The Kinetics of Chemical Change in Gaseous Systems by Cyril Norman Hinshelwood, published by Oxford University Press and printed in Great Britain. This well-preserved copy is a second edition from 1929, the first edition having been published in 1926.


CN Hinshelwood 1897-1967

The key difference between the first and second edition is the addition of a chapter on chain reactions. Hinshelwood’s theoretical and experimental work in this area, especially in the study of explosions, led to him receiving the Nobel Prize for Chemistry in 1956, which he shared with Nikolay Semyonov.

This particular copy of Hinshelwood’s masterwork has further historical interest since it once belonged to another famous chemist, who inscribed his name on the title page:


The signature is that of Friedrich Paneth, an Austrian-born chemist of Jewish parentage who took refuge in Britain in 1933 and became a naturalized British citizen in 1939. After a distinguished scientific career in Britain, Paneth was invited to become director of the Max Planck Institute for Chemistry in Mainz, a position he held from 1953 until his death in 1958.


Friedrich Paneth 1887-1958

The inscription XI.29. indicates that Paneth acquired this copy in November 1929, shortly after its publication. In the chapter on heterogeneous reactions, Hinshelwood refers to work published by Paneth and includes him in the index of authors. So it is possible that this book was a courtesy copy sent by Hinshelwood to Paneth, who at the time was heading the chemical institute at Königsberg University.

– – – –


Friedrich Paneth was a multitalented individual; besides his extensive achievements as a physical chemist, he was also an accomplished photographer and early user of autochrome photography, as can be seen on this link:


This autochrome photograph of his children Eva and Heinz, on the shore of Lake Luzern, was probably taken in 1927.


– – – –


8 octobre 1850 – 17 septembre 1936


Le Châtelier’s principle is unusual in that it was conceived as a generalization of a principle first stated by someone else.

In 1884, the Dutch theoretician JH van ‘t Hoff published a work entitled Etudes de Dynamique Chimique [Studies in Chemical Dynamics]. In it, he stated a principle drawn from observations of different forms of equilibrium:

“Lowering the temperature displaces the equilibrium between two different conditions of matter (systems) towards the system whose formation produces heat.”

The converse statement was also implied, leading van ‘t Hoff to the realization that application of the principle made it possible “to predict the direction in which any given chemical equilibrium will be displaced at higher or lower temperatures.”

A few months after the publication of the Etudes, the following note appeared on page 786 of volume 99 of Comptes-rendus de l’Academie des Sciences:


The note covers two pages, but the crucial paragraph is the one shown immediately above, in which Le Châtelier extends van ‘t Hoff’s recently published principle to include pressure and (in modern terms) chemical potential. Rendered in English, the paragraph reads

“Any system in stable chemical equilibrium, subjected to the influence of an external cause which tends to change either its temperature or its condensation (pressure, concentration, number of molecules in unit volume), either as a whole or in some of its parts, can only undergo such internal modifications as would, if produced alone, bring about a change of temperature or of condensation of opposite sign to that resulting from the external cause.”

Just as van ‘t Hoff used inductive reasoning to relate temperature change to displacement of equilibrium, so Le Châtelier adopts the same technique to extend the principle to changes of pressure and potential.

Having arrived at a generalized principle – that systems in stable equilibrium tend to counteract changes imposed on them – Le Châtelier then sought to deduce this result mathematically from equations describing systems in equilibrium. During this quest, he discovered that the American physicist Josiah Willard Gibbs had done a good part of the groundwork in his milestone monograph On The Equilibrium of Heterogeneous Substances (1876-1878). In 1899, Le Châtelier translated this hugely difficult treatise into French, thereby helping many scientists in France and beyond to access Gibbs’ powerful ideas.

– – – –

Early misunderstandings

Le Châtelier’s principle, first stated in 1884 and extended as the Le Châtelier-Braun principle in 1887, has stood the test of time. Today we view it as a very useful law, but that was not how it was viewed by some of the academic establishment in the early 20th century. Critics including the illustrious Paul Ehrenfest and Lord Rayleigh regarded the principle as vaguely worded and impossible to apply without ambiguity. As late as 1937, Paul Epstein in his Textbook of Thermodynamics wrote that this criticism “has been generally accepted since”.

This was news to me; when I was taught Le Châtelier’s principle at school, the wording was the same as in Epstein’s day but we had no issues with vagueness or ambiguity. I wondered what this criticism was all about, so I delved into the online archive of ancient journals. And came up with this:


From J Chem Soc, 1917; vol 111. CarnotCycle hopes that the misspelling of Braun in the title was a genuine typo, and not the deliberate use of irony to mock the authors of the principle.

It is clear from the first paragraph that the charge of ambiguity by Ehrenfest and Rayleigh arose from a failure to distinguish between cause and effect. Perturbations of systems in stable chemical equilibrium are caused by changes in generalized forces which, as Le Châtelier documents, are intensive variables. The ‘response of the system’, or generalized displacements, are the extensive conjugates. This answers Rayleigh’s question as to why we are to choose the one (pressure) rather than the other (volume) as the independent variable.

What surprised me was that this misunderstanding persisted for three decades. It just goes to show that in thermodynamics, even the most perspicacious individuals can have enduring blind spots.

– – – –

The Principle behind the Principle


In the Etudes of 1884, van ‘t Hoff stated his principle on the basis of different observations of equilibrium displacement with temperature. But while reaching his conclusion inductively, he still managed to give a precise mathematical expression of the principle. In modern notation it reads:


This famous equation, sometimes called the van ‘t Hoff isochore, was stated without proof in the 1884 edition, but in the second edition of 1896 a proof was provided which is based – as with many proofs of that era – on a reversible cycle of operations involving heat and work.

Although thermodynamically exact, the equation provides little insight into why a system in stable equilibrium tends to resist actions which alter that state. Not that this would have bothered van ‘t Hoff, who was much more interested in practicality than philosophical pondering.

But in the early 1900s, physical chemists began to look for an explanation. In A Textbook of Thermodynamics with special reference to Chemistry (1913), J.R. Partington remarked that Le Châtelier’s principle is an expression of “a very general theorem … called the Principle of Least Action. We can state it in the form that, if the system is in stable equilibrium, and if anything is done so as to alter this state, then something occurs in the system itself which tends to resist the change, by partially annulling the action imposed on the system.”

Partington was hinting at a more general notion underlying Le Châtelier’s original description. That notion was more concisely expressed in another volume entitled A Textbook of Thermodynamics, written by Frank Ernest Hoare in 1931, in which he stated “every system in equilibrium is conservative”.

– – – –

Interlude : Mapping chemical reactions


It is one the conditions of stable equilibrium in thermodynamic systems that for a given temperature and pressure, the Gibbs free energy is a minimum. In the context of a chemical reaction, it means that the Gibbs free energy of the reaction mixture will decrease in the manner shown above, where the difference between P (pure products) and R (pure reactants) is the standard free energy of reaction and E is the equilibrium point at the minimum point of the curve.

If the reactants are initially present in stoichiometric proportions, the x-axis represents the mole fraction of products in the reaction mixture. In 1920, a Belgian mathematician and physicist called Théophile de Donder proposed another name for this dimensionless extensive variable. He called it “the degree of advancement of a chemical reaction”, and represented it by the Greek letter ξ (xi).

– – – –

Defining conservative behavior

In 1937, Professor Mark Zemansky – at the time an associate professor of physics at what was then called the College of the City of New York – published a textbook entitled Heat and Thermodynamics.

In the last section of the last chapter of the book, Zemansky turns his attention to Le Châtelier’s principle. He considers a heterogeneous chemical reaction which is in phase equilibrium but not chemical equilibrium; under these circumstances the Gibbs free energy G is a function of temperature T, pressure P and degree of advancement ξ.


When the chemical reaction reaches stable equilibrium at temperature T and pressure P, it follows that ∂G/∂ξ = 0. Zemansky then considers a neighboring equilibrium state at temperature T+dT and pressure P+dP. The new degree of reaction will be ξ+dξ, but the change in the slope of the curve during this process is zero. Therefore


Zemansky thus arrives at a mathematical definition of conservative behavior for a thermodynamic system consisting of a reaction mixture in stable equilibrium with respect to the reaction to which ξ refers.

The next task is to use the operations of calculus to find expressions for the derivatives ∂ξ/∂T and ∂ξ/∂P in terms of ΔS (=ΔH/T) and ΔV respectively. The first step is to write out fully the condition on dT, dP and dξ required to maintain conservative behavior:


Zemansky then employs a neat device to introduce S and V into the calculation. The order of differentiation of a state function is immaterial, so he reverses the order of differentiation in the first two terms


Since (∂G/∂T)P,ξ = –S and (∂G/∂P)T,ξ = V,


For the sake of brevity, I will introduce at this point a shortcut that Zemansky did not use, but which does not in any way alter the results of his reasoning.

For any extensive property X which varies according to the degree of advancement of a chemical reaction ξ at constant temperature and pressure, the slope of the curve has the following property


Applying this fact to the above equation, we find that in order to maintain the equilibrium condition ∂G/∂ξ=0, dT, dP and dξ must be such that


Setting dP=0 yields the result


When ΔG=0, the denominator is positive. At equilibrium therefore, (∂ξ/∂T)P and ΔH have the same sign. So for an endothermic reaction (positive ΔH) the degree of reaction advancement at equilibrium increases as the temperature increases. This accords with Le Châtelier’s principle.

Setting dT=0 yields the result


When ΔG=0, the denominator is positive. At equilibrium therefore, (∂ξ/∂P)T and ΔV have opposite signs. For a reaction resulting in a reduction of volume, the degree of reaction advancement at equilibrium increases as the pressure increases. This accords with Le Châtelier’s principle.

Zemansky thus demonstrates that deductions from a mathematical definition of conservative behavior for a thermodynamic system consisting of a reaction mixture in stable equilibrium result in equations which “express in a rigorous form that part of Le Châtelier’s principle which concerns chemical reaction in heterogeneous systems”.

Le Châtelier never got to see this deduction of his principle. He died in 1936, just a year before Zemansky’s book was published.

– – – –


In my previous post JH van ‘t Hoff and the Gaseous Theory of Solutions, I related how van ‘t Hoff deduced a thermodynamically exact relation between osmotic pressure and the vapor pressures of pure solvent and solvent in solution, and then abandoned it in favor of an erroneous idea which seemed to possess greater aesthetic appeal, on account of a chance encounter with a colleague in an Amsterdam street.

Rendered in modern notation, the thermodynamically exact equation van ‘t Hoff deduced in his Studies in Chemical Dynamics (1884), was


Following his flawed moment of inspiration upon learning the results of osmotic experiments conducted by Wilhelm Pfeffer, he leaped to the conclusion that the law of dilute solutions was formally identical with the ideal gas law


It would seem van ‘t Hoff was so enamored with the idea of solutions and gases obeying the same fundamental law, that he failed to notice that the latter equation is actually a special case of the former. Viewed from this perspective, the latter’s resemblance to the gas law is entirely coincidental; it arises solely from a sequence of approximations applied to the original equation.

As a footnote to history, CarnotCycle lays out the path by which the latter equation can be reached from the former, and shows how accuracy reduces commensurately with simplification.

– – – –

We begin with van ‘t Hoff’s thermodynamically exact equation from the Studies in Chemical Dynamics

ts06 (1)

where Π is the osmotic pressure, V1 is the partial molal volume of the solvent in the solution, p0 is the vapor pressure of the pure solvent and p is the vapor pressure of the solvent in the solution.

Assuming an ideal solution, in the sense that Raoult’s law is obeyed, then


where x1 and x2 are the mole fractions of solvent and solute respectively. So for an ideal solution, equation 1 becomes


If the ideal solution is also dilute, the mole fraction of the solute is small and hence


so that


For a dilute solution x2 approximates to n2/n1, where n2 and n1 are the moles of solute and solvent, respectively, in the solution. The above equation may therefore be written


In dilute solution, the partial molal volume of the solvent V1 is generally identical with the ordinary molar volume of the solvent. The product V1n1 is then the total volume of solvent in the solution, and V1n1/n2 is the volume of solvent per mole of solute. Representing this quantity by V’, the above equation becomes

ae07 (2)

which is identical with the empirical equation proposed by HN Morse in 1905. For an extremely dilute solution the volume V’ may be replaced by the volume V of the solution containing 1 mole of solute; under these conditions we have

ts04 (3)

which is the van ‘t Hoff equation.

– – – –

It is instructive to compare the osmotic pressures calculated from the numbered equations shown above and those obtained by experiment. It is seen that Eq.1, which involves measured vapor pressures, is in good agreement with experiment at all concentrations. Eq.3 fails in all but the most dilute solutions, while Eq.2 represents only a modest improvement.


These figures give a measure of van ‘t Hoff’s talent as a theoretician in deducing Eq.1, and the error into which he fell when abandoning it in favor of Eq.3.

– – – –

Mouse-over links to works referred to in this post

Jacobus Henricus van ‘t Hoff Studies in Chemical Dynamics


JH van ‘t Hoff’s laboratory in Amsterdam

The 1880s were important years for the developing discipline of physical chemistry. The gas laws of Mariotte and Gay-Lussac (Boyle and Charles in the English-speaking world) had reached a high point of refinement in Europe following the work of Thomas Andrews and James Thomson in Belfast, and Johannes van der Waals in Leiden. The neophyte science was now poised to discover the laws of solutions.

The need for this advance was clear. As future Nobel Prize winner Wilhelm Ostwald put it in his Lehrbuch der allgemeinen Chemie (1891), “A knowledge of the laws of solutions is important because almost all the chemical processes which occur in nature, whether in animal or vegetable organisms, or in the nonliving surface of the earth, and also those which are carried out in the laboratory, take place between substances in solution. . . . . Solutions are more important than gases, for the latter seldom react together at ordinary temperatures, whereas solutions present the best conditions for the occurrence of all chemical processes.”

In France, important discoveries concerning the vapor pressures exerted by solutions were already being made by François-Marie Raoult. In Germany, the botanist Wilhelm Pfeffer had developed a rigid semipermeable membrane to study the effect of temperature and concentration on the osmotic pressures of solutions. And in the Netherlands, a talented theoretician by the name of Jacobus Henricus van ‘t Hoff (note the space before the apostrophe) was busy writing up his research on chemical kinetics in a work entitled “Studies in Chemical Dynamics”, which contained all that was previously known as well as a great deal that was entirely new.

Then one day in 1883, while van ‘t Hoff was writing the last chapter of the Studies on the subject of chemical affinity, in which he demonstrates an exact relation between osmotic pressure and the vapor pressures of pure solvent and solvent in solution, a chance encounter with a colleague in an Amsterdam street misdirected his thinking and diverted him onto the wrong conceptual road.


On page 233 of the Studies in Chemical Dynamics, van ‘t Hoff showed that osmotic pressure (D) has a thermodynamic explanation in the difference of vapor pressures of pure solvent and solvent in solution. Yet having discovered this truth, he promptly abandoned it in favor of an idea which seemed to possess greater aesthetic appeal. It was one of those wrong turns we all take in life, but in van ‘t Hoff’s case it seems particularly wayward.

– – – –

Jumping to conclusions

Writing in the Journal of Chemical Education (August 1986), the American Nobel Prize winner George Wald relates how van ‘t Hoff had just left his laboratory when he encountered his fellow professor the Dutch botanist Hugo de Vries, who told him about Wilhelm Pfeffer’s experiments with a semipermeable membrane, and Pfeffer’s discovery that for each degree rise in temperature, the osmotic pressure of a dilute solution goes up by about 1/270.


Hugo de Vries (1848-1935) and Wilhelm Pfeffer (1845-1920)

In an instant, van ‘t Hoff recognized this to be an approximation of the reciprocal of the absolute temperature at 0°C. As he himself put it:

“That was a ray of light, and led at once to the inescapable conclusion that the osmotic pressure of dilute solutions must vary with temperature entirely as does gas pressure, that is, in accord with Gay-Lussac’s Law [pressure directly proportional to temperature]. There followed at once however a second relationship, which Pfeffer had already drawn close to: the osmotic pressure of dilute solutions is proportional also to concentration, i.e., alongside Gay-Lussac’s Law, that of Boyle applies. Without doubt the famous mathematical expression pv = RT holds for both.”

And thus was born, in a moment of flawed inspiration on an Amsterdam street, the Gaseous Theory of Solutions. It even had a mechanism. Osmotic pressure, according to van ‘t Hoff, was caused by one-sided bombardment of a membrane by molecules of solute and was equal to the pressure that would be exerted if the solute occupied the space by itself in the form of an ideal gas. For van ‘t Hoff, this provided the answer to the age-old mystery of why sugar dissolves in water. The answer was simple – it turns into a gas.

– – – –

Compounding the error

The law of osmotic pressure, and the gaseous theory that lay behind it, was published by van ‘t Hoff in 1886. Right from the start it was viewed with skepticism in several quarters, and it is not hard to figure out why. As the above quotation shows, van ‘t Hoff had convinced himself in advance that the law of dilute solutions was formally identical with the ideal gas law, and the theoretical support he supplies in his paper seems predicated to a preordained conclusion and shows little regard for stringency.

In particular, the deduction of the proportionality between osmotic pressure and concentration is analogy rather than proof, since it makes use of hypothetical considerations as to the cause of osmotic pressure. Moreover, mechanism is advocated – an anathema to the model-free spirit of classical thermodynamics.

Before long, van ‘t Hoff would distance himself from claims of solute molecules mimicking ideal gases, thanks to a brilliant piece of reasoning from Wilhelm Ostwald – to which I shall return. But van ‘t Hoff’s equation for the osmotic pressure of dilute solutions


where Π is the osmotic pressure, kept the association with the ideal gas equation firmly in place. And it was this formal identity that led those influenced by van ‘t Hoff along the wrong track for several years.

One such was the wealthy British aristocrat Lord Berkeley, who developed a passion for experimental science at about this time, and furnished a notable example of how one conceptual error can lead to another.

– – – –

Misguided research


Lord Berkeley (1865-1942)

It was known from existing data that the more concentrated the solution, the more the osmotic pressure deviated from the value calculated with van ‘t Hoff’s equation. The idea circulating at the time was that the refinements of the ideal gas law that had been shown to apply to real gases, could equally well be applied to more concentrated solutions. As Lord Berkeley put it in the introduction to a paper, On some Physical Constants of Saturated Solutions, communicated to the Royal Society in London in May 1904:

“The following work was undertaken with a view to obtaining data for the tentative application of van der Waals’ equation to concentrated solutions. It is evidently probable that if the ordinary gas equation be applicable to dilute solutions, then that of van der Waals, or one of analogous form, should apply to concentrated solutions – that is, to solutions having large osmotic pressures.”

And so it was that Lord Berkeley embarked upon a program of research which lasted for more than two decades and failed to deliver any meaningful results because his work was founded on false premises. It is in the highest measure ironic that van ‘t Hoff, just before he was sidetracked, had found his way to the truth in the Studies, in an equation which rendered in modern notation reads


where Π is the osmotic pressure and V1 is the partial molal volume of the solvent in the solution. This thermodynamic relationship between osmotic pressure and vapor pressure is independent of any theory or mechanism of osmotic pressure. It is also exact, provided that the vapor exhibits ideal gas behavior and that the solution is incompressible.

If van ‘t Hoff had realized this, Lord Berkeley’s research could have taken another, more fruitful path. But history dictated otherwise, and it would have to wait until the publication in 1933 of Edward Guggenheim’s Modern Thermodynamics by the methods of Willard Gibbs before physical chemists in Europe would gain a broader theoretical understanding of colligative properties – of which the osmotic phenomenon is one.

– – – –

Brilliant reasoning


Wilhelm Ostwald (1853-1932)

But to return to van ‘t Hoff’s change of stance regarding mechanism in osmosis. By 1892 he was no longer advocating his membrane bombardment idea, and in stark contrast was voicing the opinion that the actual mechanism of osmotic pressure was not important. It is likely that his change of mind was brought about by a brilliant piece of thinking by his close colleague Wilhelm Ostwald, published in 1891 in the latter’s Lehrbuch der allgemeinen Chemie. Using a thought experiment worthy of Sadi Carnot, Ostwald shows that osmotic pressure must be independent of the nature of the membrane, thereby rendering mechanism unimportant.

Ostwald’s reasoning is so lucid and compelling that one wonders why it didn’t put an end to speculation on osmotic mechanisms. Here is how Ostwald presented his argument:


“… it may be stated with certainty that the amount of pressure is independent of the nature of the membrane, provided that the membrane is not permeable by the dissolved substance. To understand this, let it be supposed that two separating partitions, A and B, formed of different membranes, are placed in a cylinder (fig. 17). Let the space between the membranes contain a solution and let there be pure water in the space at the ends of the cylinder. Let the membrane A show a higher pressure, P, and the membrane B show a smaller pressure, p. At the outset, water will pass through both membranes into the inner space until the pressure p is attained, when the passage of water through B will cease, but the passage through  A will continue. As soon as the pressure in the inner space has been thus increased above p, water will be pressed out through B. The pressure can never reach the value P; water must enter continuously through A, while a finite difference of pressures is maintained. If this were realized we should have a machine capable of performing infinite work, which is impossible. A similar demonstration holds good if p>P ; it is, therefore, necessary that P=p; in other words, it follows necessarily that osmotic pressure is independent of the nature of the membrane.”

– – – –


For van ‘t Hoff, his work on osmosis culminated in triumph. He was awarded the very first Nobel Prize in Chemistry in 1901 for which the citation reads:

“in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

But van ‘t Hoff did not have long to enjoy the accolade. “Something seems to have altered my constitution,” he wrote on August 1, 1906, and on March 1, 1911, he died of tuberculosis aged 58.


– – – –

Mouse-over links to works referred to in this post

Jacobus Henricus van ‘t Hoff Studies in Chemical Dynamics

Wilhelm Ostwald Lehrbuch der allgemeinen Chemie (1891) [English Version – see page 103]

Lord Berkeley On some Physical Constants of Saturated Solutions