Posts Tagged ‘DHT22’

This prototype displays temperature, relative humidity, dew point temperature and absolute humidity

UPDATE: See the new wireless version < here >

As shown in previous posts on the CarnotCycle blog, it is possible to compute dew point temperature and absolute humidity (defined as water vapor density in g/m^3) from ambient temperature and relative humidity. This adds value to the output of RH&T sensors like the DHT22 pictured above, and extends the range of useful parameters that can be displayed or toggled on temperature-humidity gauges employing these sensors.

Meteorological opinion* suggests that dew point temperature is a more dependable parameter than relative humidity for assessing climate comfort especially during summer, while absolute humidity quantifies water vapor in terms of mass per unit volume. In effect this added parameter turns an ordinary temperature-humidity gauge into a gas analyzer. (more…)

Relative humidity (RH) and temperature (T) data from an RH&T sensor like the DHT22 can be used to compute not only absolute humidity AH but also dew point temperature TD

There has been a fair amount of interest in my formula which computes AH from measured RH and T, since it adds value to the output of RH&T sensors. To further extend this value, I have developed another formula which computes dew point temperature TD from measured RH and T.

Formula for computing dew point temperature TD

In this formula (P Mander 2017) the measured temperature T and the computed dew point temperature TD are expressed in degrees Celsius, and the measured relative humidity RH is expressed in %

gif format (decimal separator = .)

gif format (decimal separator = ,)

jpg format (decimal separator = .)

jpg format (decimal separator = ,)

– – – –

Strategy for computing TD from RH and T

1. The dew point temperature TD is defined in the following relation where RH is expressed in %


2. To obtain values for Psat, we can use the Bolton formula[REF, eq.10] which generates saturation vapor pressure Psat (hectopascals) as a function of temperature T (Celsius)

These formulas are stated to be accurate to within 0.1% over the temperature range –30°C to +35°C

3. Substituting in the first equation yields

Taking natural logarithms

Rearranging

Separating TD terms on one side yields

– – – –

P Mander August 2017