Posts Tagged ‘JH van ‘t Hoff’

lc01

8 octobre 1850 – 17 septembre 1936

History

Le Châtelier’s principle is unusual in that it was conceived as a generalization of a principle first stated by someone else.

In 1884, the Dutch theoretician JH van ‘t Hoff published a work entitled Etudes de Dynamique Chimique [Studies in Chemical Dynamics]. In it, he stated a principle drawn from observations of different forms of equilibrium:

“Lowering the temperature displaces the equilibrium between two different conditions of matter (systems) towards the system whose formation produces heat.”

The converse statement was also implied, leading van ‘t Hoff to the realization that application of the principle made it possible “to predict the direction in which any given chemical equilibrium will be displaced at higher or lower temperatures.”

A few months after the publication of the Etudes, the following note appeared on page 786 of volume 99 of Comptes-rendus de l’Academie des Sciences:

lc02

The note covers two pages, but the crucial paragraph is the one shown immediately above, in which Le Châtelier extends van ‘t Hoff’s recently published principle to include pressure and (in modern terms) chemical potential. Rendered in English, the paragraph reads

“Any system in stable chemical equilibrium, subjected to the influence of an external cause which tends to change either its temperature or its condensation (pressure, concentration, number of molecules in unit volume), either as a whole or in some of its parts, can only undergo such internal modifications as would, if produced alone, bring about a change of temperature or of condensation of opposite sign to that resulting from the external cause.”

Just as van ‘t Hoff used inductive reasoning to relate temperature change to displacement of equilibrium, so Le Châtelier adopts the same technique to extend the principle to changes of pressure and potential.

Having arrived at a generalized principle – that systems in stable equilibrium tend to counteract changes imposed on them – Le Châtelier then sought to deduce this result mathematically from equations describing systems in equilibrium. During this quest, he discovered that the American physicist Josiah Willard Gibbs had done a good part of the groundwork in his milestone monograph On The Equilibrium of Heterogeneous Substances (1876-1878). In 1899, Le Châtelier translated this hugely difficult treatise into French, thereby helping many scientists in France and beyond to access Gibbs’ powerful ideas.

– – – –

Early misunderstandings

Le Châtelier’s principle, first stated in 1884 and extended as the Le Châtelier-Braun principle in 1887, has stood the test of time. Today we view it as a very useful law, but that was not how it was viewed by some of the academic establishment in the early 20th century. Critics including the illustrious Paul Ehrenfest and Lord Rayleigh regarded the principle as vaguely worded and impossible to apply without ambiguity. As late as 1937, Paul Epstein in his Textbook of Thermodynamics wrote that this criticism “has been generally accepted since”.

This was news to me; when I was taught Le Châtelier’s principle at school, the wording was the same as in Epstein’s day but we had no issues with vagueness or ambiguity. I wondered what this criticism was all about, so I delved into the online archive of ancient journals. And came up with this:

lc05

From J Chem Soc, 1917; vol 111. CarnotCycle hopes that the misspelling of Braun in the title was a genuine typo, and not the deliberate use of irony to mock the authors of the principle.

It is clear from the first paragraph that the charge of ambiguity by Ehrenfest and Rayleigh arose from a failure to distinguish between cause and effect. Perturbations of systems in stable chemical equilibrium are caused by changes in generalized forces which, as Le Châtelier documents, are intensive variables. The ‘response of the system’, or generalized displacements, are the extensive conjugates. This answers Rayleigh’s question as to why we are to choose the one (pressure) rather than the other (volume) as the independent variable.

What surprised me was that this misunderstanding persisted for three decades. It just goes to show that in thermodynamics, even the most perspicacious individuals can have enduring blind spots.

– – – –

The Principle behind the Principle

lc06

In the Etudes of 1884, van ‘t Hoff stated his principle on the basis of different observations of equilibrium displacement with temperature. But while reaching his conclusion inductively, he still managed to give a precise mathematical expression of the principle. In modern notation it reads:

lc07

This famous equation, sometimes called the van ‘t Hoff isochore, was stated without proof in the 1884 edition, but in the second edition of 1896 a proof was provided which is based – as with many proofs of that era – on a reversible cycle of operations involving heat and work.

Although thermodynamically exact, the equation provides little insight into why a system in stable equilibrium tends to resist actions which alter that state. Not that this would have bothered van ‘t Hoff, who was much more interested in practicality than philosophical pondering.

But in the early 1900s, physical chemists began to look for an explanation. In A Textbook of Thermodynamics with special reference to Chemistry (1913), J.R. Partington remarked that Le Châtelier’s principle is an expression of “a very general theorem … called the Principle of Least Action. We can state it in the form that, if the system is in stable equilibrium, and if anything is done so as to alter this state, then something occurs in the system itself which tends to resist the change, by partially annulling the action imposed on the system.”

Partington was hinting at a more general notion underlying Le Châtelier’s original description. That notion was more concisely expressed in another volume entitled A Textbook of Thermodynamics, written by Frank Ernest Hoare in 1931, in which he stated “every system in equilibrium is conservative”.

– – – –

Interlude : Mapping chemical reactions

lc08

It is one the conditions of stable equilibrium in thermodynamic systems that for a given temperature and pressure, the Gibbs free energy is a minimum. In the context of a chemical reaction, it means that the Gibbs free energy of the reaction mixture will decrease in the manner shown above, where the difference between P (pure products) and R (pure reactants) is the standard free energy of reaction and E is the equilibrium point at the minimum point of the curve.

If the reactants are initially present in stoichiometric proportions, the x-axis represents the mole fraction of products in the reaction mixture. In 1920, a Belgian mathematician and physicist called Théophile de Donder proposed another name for this dimensionless extensive variable. He called it “the degree of advancement of a chemical reaction”, and represented it by the Greek letter ξ (xi).

– – – –

Defining conservative behavior

In 1937, Professor Mark Zemansky – at the time an associate professor of physics at what was then called the College of the City of New York – published a textbook entitled Heat and Thermodynamics.

In the last section of the last chapter of the book, Zemansky turns his attention to Le Châtelier’s principle. He considers a heterogeneous chemical reaction which is in phase equilibrium but not chemical equilibrium; under these circumstances the Gibbs free energy G is a function of temperature T, pressure P and degree of advancement ξ.

lc09

When the chemical reaction reaches stable equilibrium at temperature T and pressure P, it follows that ∂G/∂ξ = 0. Zemansky then considers a neighboring equilibrium state at temperature T+dT and pressure P+dP. The new degree of reaction will be ξ+dξ, but the change in the slope of the curve during this process is zero. Therefore

lc10

Zemansky thus arrives at a mathematical definition of conservative behavior for a thermodynamic system consisting of a reaction mixture in stable equilibrium with respect to the reaction to which ξ refers.

The next task is to use the operations of calculus to find expressions for the derivatives ∂ξ/∂T and ∂ξ/∂P in terms of ΔS (=ΔH/T) and ΔV respectively. The first step is to write out fully the condition on dT, dP and dξ required to maintain conservative behavior:

lc11

Zemansky then employs a neat device to introduce S and V into the calculation. The order of differentiation of a state function is immaterial, so he reverses the order of differentiation in the first two terms

lc12

Since (∂G/∂T)P,ξ = –S and (∂G/∂P)T,ξ = V,

lc13

For the sake of brevity, I will introduce at this point a shortcut that Zemansky did not use, but which does not in any way alter the results of his reasoning.

For any extensive property X which varies according to the degree of advancement of a chemical reaction ξ at constant temperature and pressure, the slope of the curve has the following property

lc14

Applying this fact to the above equation, we find that in order to maintain the equilibrium condition ∂G/∂ξ=0, dT, dP and dξ must be such that

lc15

Setting dP=0 yields the result

lc16

When ΔG=0, the denominator is positive. At equilibrium therefore, (∂ξ/∂T)P and ΔH have the same sign. So for an endothermic reaction (positive ΔH) the degree of reaction advancement at equilibrium increases as the temperature increases. This accords with Le Châtelier’s principle.

Setting dT=0 yields the result

lc17

When ΔG=0, the denominator is positive. At equilibrium therefore, (∂ξ/∂P)T and ΔV have opposite signs. For a reaction resulting in a reduction of volume, the degree of reaction advancement at equilibrium increases as the pressure increases. This accords with Le Châtelier’s principle.

Zemansky thus demonstrates that deductions from a mathematical definition of conservative behavior for a thermodynamic system consisting of a reaction mixture in stable equilibrium result in equations which “express in a rigorous form that part of Le Châtelier’s principle which concerns chemical reaction in heterogeneous systems”.

Le Châtelier never got to see this deduction of his principle. He died in 1936, just a year before Zemansky’s book was published.

– – – –

ae01

In my previous post JH van ‘t Hoff and the Gaseous Theory of Solutions, I related how van ‘t Hoff deduced a thermodynamically exact relation between osmotic pressure and the vapor pressures of pure solvent and solvent in solution, and then abandoned it in favor of an erroneous idea which seemed to possess greater aesthetic appeal, on account of a chance encounter with a colleague in an Amsterdam street.

Rendered in modern notation, the thermodynamically exact equation van ‘t Hoff deduced in his Studies in Chemical Dynamics (1884), was

ts06

Following his flawed moment of inspiration upon learning the results of osmotic experiments conducted by Wilhelm Pfeffer, he leaped to the conclusion that the law of dilute solutions was formally identical with the ideal gas law

ts04

It would seem van ‘t Hoff was so enamored with the idea of solutions and gases obeying the same fundamental law, that he failed to notice that the latter equation is actually a special case of the former. Viewed from this perspective, the latter’s resemblance to the gas law is entirely coincidental; it arises solely from a sequence of approximations applied to the original equation.

As a footnote to history, CarnotCycle lays out the path by which the latter equation can be reached from the former, and shows how accuracy reduces commensurately with simplification.

– – – –

We begin with van ‘t Hoff’s thermodynamically exact equation from the Studies in Chemical Dynamics

ts06 (1)

where Π is the osmotic pressure, V1 is the partial molal volume of the solvent in the solution, p0 is the vapor pressure of the pure solvent and p is the vapor pressure of the solvent in the solution.

Assuming an ideal solution, in the sense that Raoult’s law is obeyed, then

ae02

where x1 and x2 are the mole fractions of solvent and solute respectively. So for an ideal solution, equation 1 becomes

ae03

If the ideal solution is also dilute, the mole fraction of the solute is small and hence

ae04

so that

ae05

For a dilute solution x2 approximates to n2/n1, where n2 and n1 are the moles of solute and solvent, respectively, in the solution. The above equation may therefore be written

ae06

In dilute solution, the partial molal volume of the solvent V1 is generally identical with the ordinary molar volume of the solvent. The product V1n1 is then the total volume of solvent in the solution, and V1n1/n2 is the volume of solvent per mole of solute. Representing this quantity by V’, the above equation becomes

ae07 (2)

which is identical with the empirical equation proposed by HN Morse in 1905. For an extremely dilute solution the volume V’ may be replaced by the volume V of the solution containing 1 mole of solute; under these conditions we have

ts04 (3)

which is the van ‘t Hoff equation.

– – – –

It is instructive to compare the osmotic pressures calculated from the numbered equations shown above and those obtained by experiment. It is seen that Eq.1, which involves measured vapor pressures, is in good agreement with experiment at all concentrations. Eq.3 fails in all but the most dilute solutions, while Eq.2 represents only a modest improvement.

ae08

These figures give a measure of van ‘t Hoff’s talent as a theoretician in deducing Eq.1, and the error into which he fell when abandoning it in favor of Eq.3.

– – – –

Mouse-over links to works referred to in this post

Jacobus Henricus van ‘t Hoff Studies in Chemical Dynamics

ts01

JH van ‘t Hoff’s laboratory in Amsterdam

The 1880s were important years for the developing discipline of physical chemistry. The gas laws of Mariotte and Gay-Lussac (Boyle and Charles in the English-speaking world) had reached a high point of refinement in Europe following the work of Thomas Andrews and James Thomson in Belfast, and Johannes van der Waals in Leiden. The neophyte science was now poised to discover the laws of solutions.

The need for this advance was clear. As future Nobel Prize winner Wilhelm Ostwald put it in his Lehrbuch der allgemeinen Chemie (1891), “A knowledge of the laws of solutions is important because almost all the chemical processes which occur in nature, whether in animal or vegetable organisms, or in the nonliving surface of the earth, and also those which are carried out in the laboratory, take place between substances in solution. . . . . Solutions are more important than gases, for the latter seldom react together at ordinary temperatures, whereas solutions present the best conditions for the occurrence of all chemical processes.”

In France, important discoveries concerning the vapor pressures exerted by solutions were already being made by François-Marie Raoult. In Germany, the botanist Wilhelm Pfeffer had developed a rigid semipermeable membrane to study the effect of temperature and concentration on the osmotic pressures of solutions. And in the Netherlands, a talented theoretician by the name of Jacobus Henricus van ‘t Hoff (note the space before the apostrophe) was busy writing up his research on chemical kinetics in a work entitled “Studies in Chemical Dynamics”, which contained all that was previously known as well as a great deal that was entirely new.

Then one day in 1883, while van ‘t Hoff was writing the last chapter of the Studies on the subject of chemical affinity, in which he demonstrates an exact relation between osmotic pressure and the vapor pressures of pure solvent and solvent in solution, a chance encounter with a colleague in an Amsterdam street misdirected his thinking and diverted him onto the wrong conceptual road.

ts02

On page 233 of the Studies in Chemical Dynamics, van ‘t Hoff showed that osmotic pressure (D) has a thermodynamic explanation in the difference of vapor pressures of pure solvent and solvent in solution. Yet having discovered this truth, he promptly abandoned it in favor of an idea which seemed to possess greater aesthetic appeal. It was one of those wrong turns we all take in life, but in van ‘t Hoff’s case it seems particularly wayward.

– – – –

Jumping to conclusions

Writing in the Journal of Chemical Education (August 1986), the American Nobel Prize winner George Wald relates how van ‘t Hoff had just left his laboratory when he encountered his fellow professor the Dutch botanist Hugo de Vries, who told him about Wilhelm Pfeffer’s experiments with a semipermeable membrane, and Pfeffer’s discovery that for each degree rise in temperature, the osmotic pressure of a dilute solution goes up by about 1/270.

ts03

Hugo de Vries (1848-1935) and Wilhelm Pfeffer (1845-1920)

In an instant, van ‘t Hoff recognized this to be an approximation of the reciprocal of the absolute temperature at 0°C. As he himself put it:

“That was a ray of light, and led at once to the inescapable conclusion that the osmotic pressure of dilute solutions must vary with temperature entirely as does gas pressure, that is, in accord with Gay-Lussac’s Law [pressure directly proportional to temperature]. There followed at once however a second relationship, which Pfeffer had already drawn close to: the osmotic pressure of dilute solutions is proportional also to concentration, i.e., alongside Gay-Lussac’s Law, that of Boyle applies. Without doubt the famous mathematical expression pv = RT holds for both.”

And thus was born, in a moment of flawed inspiration on an Amsterdam street, the Gaseous Theory of Solutions. It even had a mechanism. Osmotic pressure, according to van ‘t Hoff, was caused by one-sided bombardment of a membrane by molecules of solute and was equal to the pressure that would be exerted if the solute occupied the space by itself in the form of an ideal gas. For van ‘t Hoff, this provided the answer to the age-old mystery of why sugar dissolves in water. The answer was simple – it turns into a gas.

– – – –

Compounding the error

The law of osmotic pressure, and the gaseous theory that lay behind it, was published by van ‘t Hoff in 1886. Right from the start it was viewed with skepticism in several quarters, and it is not hard to figure out why. As the above quotation shows, van ‘t Hoff had convinced himself in advance that the law of dilute solutions was formally identical with the ideal gas law, and the theoretical support he supplies in his paper seems predicated to a preordained conclusion and shows little regard for stringency.

In particular, the deduction of the proportionality between osmotic pressure and concentration is analogy rather than proof, since it makes use of hypothetical considerations as to the cause of osmotic pressure. Moreover, mechanism is advocated – an anathema to the model-free spirit of classical thermodynamics.

Before long, van ‘t Hoff would distance himself from claims of solute molecules mimicking ideal gases, thanks to a brilliant piece of reasoning from Wilhelm Ostwald – to which I shall return. But van ‘t Hoff’s equation for the osmotic pressure of dilute solutions

ts04

where Π is the osmotic pressure, kept the association with the ideal gas equation firmly in place. And it was this formal identity that led those influenced by van ‘t Hoff along the wrong track for several years.

One such was the wealthy British aristocrat Lord Berkeley, who developed a passion for experimental science at about this time, and furnished a notable example of how one conceptual error can lead to another.

– – – –

Misguided research

ts05

Lord Berkeley (1865-1942)

It was known from existing data that the more concentrated the solution, the more the osmotic pressure deviated from the value calculated with van ‘t Hoff’s equation. The idea circulating at the time was that the refinements of the ideal gas law that had been shown to apply to real gases, could equally well be applied to more concentrated solutions. As Lord Berkeley put it in the introduction to a paper, On some Physical Constants of Saturated Solutions, communicated to the Royal Society in London in May 1904:

“The following work was undertaken with a view to obtaining data for the tentative application of van der Waals’ equation to concentrated solutions. It is evidently probable that if the ordinary gas equation be applicable to dilute solutions, then that of van der Waals, or one of analogous form, should apply to concentrated solutions – that is, to solutions having large osmotic pressures.”

And so it was that Lord Berkeley embarked upon a program of research which lasted for more than two decades and failed to deliver any meaningful results because his work was founded on false premises. It is in the highest measure ironic that van ‘t Hoff, just before he was sidetracked, had found his way to the truth in the Studies, in an equation which rendered in modern notation reads

ts06

where Π is the osmotic pressure and V1 is the partial molal volume of the solvent in the solution. This thermodynamic relationship between osmotic pressure and vapor pressure is independent of any theory or mechanism of osmotic pressure. It is also exact, provided that the vapor exhibits ideal gas behavior and that the solution is incompressible.

If van ‘t Hoff had realized this, Lord Berkeley’s research could have taken another, more fruitful path. But history dictated otherwise, and it would have to wait until the publication in 1933 of Edward Guggenheim’s Modern Thermodynamics by the methods of Willard Gibbs before physical chemists in Europe would gain a broader theoretical understanding of colligative properties – of which the osmotic phenomenon is one.

– – – –

Brilliant reasoning

ts07

Wilhelm Ostwald (1853-1932)

But to return to van ‘t Hoff’s change of stance regarding mechanism in osmosis. By 1892 he was no longer advocating his membrane bombardment idea, and in stark contrast was voicing the opinion that the actual mechanism of osmotic pressure was not important. It is likely that his change of mind was brought about by a brilliant piece of thinking by his close colleague Wilhelm Ostwald, published in 1891 in the latter’s Lehrbuch der allgemeinen Chemie. Using a thought experiment worthy of Sadi Carnot, Ostwald shows that osmotic pressure must be independent of the nature of the membrane, thereby rendering mechanism unimportant.

Ostwald’s reasoning is so lucid and compelling that one wonders why it didn’t put an end to speculation on osmotic mechanisms. Here is how Ostwald presented his argument:

ts08

“… it may be stated with certainty that the amount of pressure is independent of the nature of the membrane, provided that the membrane is not permeable by the dissolved substance. To understand this, let it be supposed that two separating partitions, A and B, formed of different membranes, are placed in a cylinder (fig. 17). Let the space between the membranes contain a solution and let there be pure water in the space at the ends of the cylinder. Let the membrane A show a higher pressure, P, and the membrane B show a smaller pressure, p. At the outset, water will pass through both membranes into the inner space until the pressure p is attained, when the passage of water through B will cease, but the passage through  A will continue. As soon as the pressure in the inner space has been thus increased above p, water will be pressed out through B. The pressure can never reach the value P; water must enter continuously through A, while a finite difference of pressures is maintained. If this were realized we should have a machine capable of performing infinite work, which is impossible. A similar demonstration holds good if p>P ; it is, therefore, necessary that P=p; in other words, it follows necessarily that osmotic pressure is independent of the nature of the membrane.”

– – – –

Epilogue

For van ‘t Hoff, his work on osmosis culminated in triumph. He was awarded the very first Nobel Prize in Chemistry in 1901 for which the citation reads:

“in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

But van ‘t Hoff did not have long to enjoy the accolade. “Something seems to have altered my constitution,” he wrote on August 1, 1906, and on March 1, 1911, he died of tuberculosis aged 58.

 

– – – –

Mouse-over links to works referred to in this post

Jacobus Henricus van ‘t Hoff Studies in Chemical Dynamics

Wilhelm Ostwald Lehrbuch der allgemeinen Chemie (1891) [English Version – see page 103]

Lord Berkeley On some Physical Constants of Saturated Solutions

gibbs helmholtz cartoon

History

The Gibbs-Helmholtz equation was first deduced by the German physicist Hermann von Helmholtz in his groundbreaking 1882 paper “Die Thermodynamik chemischer Vorgänge” (On the Thermodynamics of Chemical Processes). In it, he introduced the concept of free energy (freie Energie) and used the equation to demonstrate that free energy – not heat production – was the driver of spontaneous change in isothermal chemical reactions, thereby overthrowing the famously incorrect Thomsen-Berthelot principle.

Although Gibbs was first to state the relations A = U – TS and G = U + PV – TS, he did not explicitly state the Gibbs-Helmholtz equation, nor did he explore its chemical significance. So the honors for this equation really belong more to Helmholtz than to Gibbs.

But from the larger historical perspective, both of these gentlemen can rightly be considered the founders of chemical thermodynamics – Gibbs for his hugely long and insanely difficult treatise “On the Equilibrium of Heterogeneous Substances” (1875-1878), and Helmholtz for his landmark paper referred to above. These works had a significant influence on the development of physical chemistry.

– – – –

Derivation

The confusing thing about the Gibbs-Helmholtz equation is that it comes in three different versions, but most physical chemistry texts don’t say why. This is not helpful to students. Chemical thermodynamics is difficult enough already, so CarnotCycle will begin by giving the reason.

It just so happens that the form of calculus used in the Gibbs-Helmholtz equation has the following property:

For a thermodynamic state function (f) and its natural variables (x,y)

gh01

If we choose as our state function (f) the Gibbs Free Energy G and assign its natural variables, temperature T to (x) and pressure P to (y), we obtain:

gh02

Since (∂G/∂T)P = –S, and G ≡ H – TS

gh03

This is the Gibbs-Helmholtz equation. If we apply this equation to the initial and final states of a process occurring at constant temperature and pressure, and take the difference, we obtain:

gh4

where ΔH is the enthalpy change of a process taking place in a closed system capable of PV work; the three equivalent versions of the equation are determined by the properties of calculus:

gh05  (1)

gh06 (2)

gh07  (3)

A further useful relation can be derived from (2) and (3) using the equation ΔG° = –RTlnKp for a gas reaction where each of the reactants and products is in the standard state of 1 atm pressure.

Substituting –RlnKp for ΔG°/T in (2) and (3) yields

gh11  (4)

gh12  (5)

These are equivalent forms of the van ‘t Hoff equation, named after the Dutch physical chemist and first winner of the Nobel Prize in Chemistry, J.H. van ‘t Hoff (1852-1911). Approximate integration yields

gh13  (6)

– – – –

Applications of the Gibbs-Helmholtz equation

1. Calculate ΔHrxn from ΔG and its variation with temperature at constant pressure
This application of (1) is useful particularly in relation to reversible reactions in electrochemical cells, where ΔG identifies with the electrical work done –nFE. Scroll down to see the worked example GH1

2. Calculate ΔGrxn for a reaction at a temperature other than 298K
ΔH usually varies slowly with temperature, and can with reasonable accuracy be regarded as constant. Integration of (2) or (3) enables you to compute ΔGrxn for a constant-pressure process at a temperature T2 from a knowledge of ΔG and ΔH at temperature T1. Scroll down to see the worked example GH2

3. Calculate the effect of a temperature change on the equilibrium constant Kp
ΔH usually varies slowly with temperature, and can with reasonable accuracy be regarded as constant. The integrated van ‘t Hoff equation (6) allows the equilibrium constant Kp at T2 to be calculated with knowledge of Kp and ΔH° at T1. Scroll down to see the worked example GH3

– – – –

Insight: The Φ function and the meaning of –ΔG/T

By 1897, Hermann von Helmholtz was dead and Max Plank was professor of theoretical physics at the University of Berlin where he published Treatise on Thermodynamics, a popular textbook which ran to several editions. In it, Planck introduced the Φ function (originally deduced by François Massieu in 1869) as a measure of chemical stability:

planck function

The pencilled note in my German copy – found in a charity sale at a downtown church – correctly identifies Φ with –ξ/T, which in modern notation is –G/T

 

S is the entropy of the system, and (U+pV)/T is the enthalpy H of the system divided by its temperature T. Since G ≡ H – TS, we can immediately identify Φ with –G/T.

Planck’s formula indicates that Φ tends to be large when S is large and H is small, i.e. when the energy levels are closely spaced and the ground level is low – the criteria for chemical stability.

The Φ function gets even more interesting when one considers the meaning of ΔΦ.

ΔΦ = –ΔG/T = –ΔH/T + ΔS = ΔSsurroundings + ΔSsystem = ΔSuniverse

ΔΦ and –ΔG/T equate to the increase in the entropy of the universe: a measure of the ultimate driving force behind chemical reactions. The larger the value, the more strongly the reaction will want to go.

A direct association between –ΔG/T and the equilibrium constant K is thus implied, and this can be confirmed by rearranging the relation ΔG° = –RTlnKp to: –ΔG°/T = RlnKp

– – – –

Worked Example GH1

An electrochemical cell has the following half reactions:
Anode (oxidation):  Ag(s) + Cl → AgCl(s) + 1e
Cathode (reduction): ½Hg2Cl2(s) + 1e → Hg(l) + Cl

The EMF of the cell is +0.0455 volt at 298K and the temperature coefficient is +3.38 x 10-4 volt per kelvin. Calculate the enthalpy of the cell reaction, taking the faraday (F) as 96,500 coulombs.

Strategy

Use version 1 of the Gibbs-Helmholtz equation

gh05

Substitute for ΔG using the relation ΔG = –nFE

gh16

Calculation

[note that if the EMF is positive, the reaction proceeds spontaneously in the direction shown in the half reactions. If the EMF is negative, the reaction goes in the opposite direction]

The complete cell reaction for one 1 faraday is:
Ag(s) + ½Hg2Cl2(s) → AgCl(s) + Hg(l)
Each mole of silver transfers one mole of electrons (1e) to one mole of Cl ions. So n = 1.
F = 96,500 C
E = 0.0455 V
T = 298 K
(∂E/∂T)P = 3.38 x 10-4 VK-1

ΔHrxn = –1 x 96,500 (0.0455 – 298 (3.38 x 10-4)) joules
Dimensions check: remember that V= J/C, so C x V = J

ΔHrxn = 5329 J = 5.329 kJ

[note that this electrochemical cell makes use of a spontaneous endothermic reaction]

– – – –

Insight: The effect of temperature on EMF

From version 1 of the Gibbs-Helmholtz equation

gh05

and the relations ΔG = –nFE and (∂ΔG/∂T)P = –ΔS, it can be seen that

gh17

For many redox reactions that are used to power electrochemical cells, ΔSrxn is typically small (less than 50 JK-1). As a result (∂E/∂T)P is usually in the 10-4 to 10-5 range, and hence electrochemical cells are relatively insensitive to temperature.

winter text

– – – –

Worked Example GH2

The Haber Process for the production of ammonia is one of the most important industrial processes: N2(g) + 3H2(g) = 2NH3(g)
ΔG°(298K) = –33.3 kJ
ΔH°(298K) = –92.4kJ
Calculate ΔG° at 500K

Strategy

Use version 3 of the Gibbs-Helmholtz equation

gh07

Making the assumption that ΔH° remains approximately constant, perform integration

gh151

gh133

Solve for ΔG°(T2)

Calculation

ΔG°(T1) = –33.3 kJ
ΔH° = –92.4 kJ
T2 = 500K
T1 = 298K

Inserting these values into the integrated equation yields the result ΔG°(500K) ≈ 6.76 kJ. Compared with the negative value of ΔG° at 298K, the small positive value of ΔG° at 500K shows that the reaction has just become unfeasible at this temperature, pressure remaining constant at 1 atm.

– – – –

Insight: Reading the Haber process equation

N2(g) + 3H2(g) = 2NH3(g) ΔH°(298K) = –92.4 kJ

The Haber process is exothermic (negative ΔH) and results in a halving of volume (negative ΔS). Since ΔG = ΔH – TΔS, increasing the temperature will drive ΔG in a positive direction, leading to an upper temperature limit on reaction feasibility.

Le Châtelier’s principle shows that the Haber process is thermodynamically favored by low temperature and high pressure. In practice however a compromise has to be struck, since low temperature slows the rate at which equilibrium is achieved while high pressure increases the cost of equipment and maintenance.

fh text

– – – –

Worked Example GH3

The Haber Process for the production of ammonia is one of the most important industrial processes:
N2(g) + 3H2(g) = 2NH3(g) ΔH°(298K) = –92.4 kJ
The equilibrium constant KP at 298K is 6.73 x 105. Calculate KP at 400K.

Strategy

Use the approximate integral of the van ‘t Hoff equation (6) to solve for KP(T2)

gh10

gh16

Calculation

KP(T1) = 6.73 x 105, ln KP(T1) = 13.42
ΔH°(298K) = –92400 J (mol-1)
R = 8.314 J K-1 mol-1
T2 = 400K
T1 = 298K

Inserting these values into the integrated equation yields the approximate result ln KP(T2) ≈ 3.91, therefore KP(400K) ≈ 49.92. This is reasonably close to the measured value of KP(400K) = 48.91.

Compared to the large value of KP at 298K, the small positive value of KP at 400K shows that the reaction is approaching the point where it will shift to become reactant-favorable rather than product favorable.

final

New kids on the science block: Wilhelm Ostwald and Svante Arrhenius in the late 1800s. Photo credit wikimedia.org

New kids on the science block: Wilhelm Ostwald and Svante Arrhenius in the 1800s. Photo credit wikimedia.org

For a binary solution in equilibrium with its own vapor, the Phase Rule tells us that the system possesses two degrees  of freedom. So if temperature is held constant, there will be a relation at equilibrium between pressure and composition, corresponding to the observed reduction of vapor pressure by solutes. And if the solution is in equilibrium with solid solvent, there will be a relation at constant pressure between temperature and composition, corresponding to the observed depression of freezing point by solutes.

Back in the 1870s, before the thermodynamics of colligative properties had been placed on a theoretical footing, these relations had been discovered in Grenoble, France, by physicist François-Marie Raoult in connexion with his work on solutions, which occupied the last two decades of his life.

François-Marie Raoult (1830-1901), whose work on the freezing-point depression of solutes had an  unexpected influence on the history of physical chemistry. Raoult's Law is named after him. Photo credit wikimedia.org

François-Marie Raoult (1830-1901), whose work on the freezing-point depression of solutes had an unexpected influence on the history of physical chemistry. Raoult’s Law is named after him. Photo credit wikimedia.org

Raoult’s first paper describing solute-mediated depression of freezing point was published in 1878. It was a fertile area of study which Raoult appears to have had to himself, and not surprisingly he was the first to discover empirical relationships between quantities. One such relation he found was between the depression of freezing point and the molality of the solute:

Freezing-point depression = ΔTfp = Kfp x msolute

where Kfp is the cryoscopic constant for the solvent in degrees per molal. Raoult conducted many measurements of solutes in various solvents, and over time built up a body of data in support of the above relation. But in 1884, Raoult discovered a curious exception to the rule when he used sodium chloride as a solute – the effect on the freezing point of water was nearly twice as large as it should be. There was something peculiar about the behavior of common salt in solution.

– – – –

Svante Arrhenius in 1884, the year he submitted his doctoral dissertation on electrolytic conductivity that would ultimately lead to a Nobel Prize. The adjudicating committee at Uppsala University gave him the lowest possible grade for his work. Photo credit climate4you.com

Svante Arrhenius in 1884, the year he submitted his doctoral dissertation on electrolytic conductivity that would ultimately lead to a Nobel Prize. The adjudicating committee at Uppsala University gave him the lowest possible grade for his work. Photo credit climate4you.com

In the same year that Raoult in France discovered the anomalous colligative actions of sodium chloride as a solute, a 24-year-old student in Sweden named Svante Arrhenius submitted to Uppsala University a 150-page doctoral dissertation on electrolytic conductivity in aqueous solution. In it, he advanced the thesis that the conductivity of solutions of salts in water was due to the dissociation of the salt into oppositely charged particles, to which Faraday had given the name “ions” fifty years earlier. But while Faraday believed that ions were only produced during electrolysis, Arrhenius asserted that even in the absence of an electric current, solutions of salts contained ions. And he went as far as proposing that chemical reactions in solution were reactions between ions.

The professors at Uppsala were incredulous, and duly gave Arrhenius and his far-fetched ideas the minimum mark. But they underestimated the self-belief and resolve of their young student. Arrhenius followed up on their rebuttal by sending his dissertation to cutting-edge figures in Europe such as Wilhelm Ostwald and Jacobus Henricus van ‘t Hoff, who were actively developing the new science of physical chemistry. They were far more impressed, and following the award of a travel grant from the Swedish Academy of Sciences, Arrhenius was able to study with Ostwald in Riga, Kohlrausch in Germany, Boltzmann in Austria, and van ‘t Hoff in Amsterdam.

– – – –

J H "Haircut" van't Hoff (1852-1911), a founding figure in physical chemistry, a pioneer in chemical thermodynamics, and the first winner of the Nobel Prize in Chemistry (1901). Photo credit nobelpreis.org

J H “Haircut” van ‘t Hoff (1852-1911), a founding figure in physical chemistry, a pioneer in chemical thermodynamics, and the first winner of the Nobel Prize in Chemistry (1901). Photo credit nobelpreis.org

Raoult’s discovery of the anomalous effect of common salt on the freezing point of water attracted the interest of JH van ‘t Hoff, who in 1887 subjected this peculiar result to detailed study. Investigating a number of ‘misbehaving’ salts, van ‘t Hoff found in each instance that the ratio of the measured freezing-point depression to the expected value approached a whole number as the solutions became increasingly dilute.

In the case of common salt, sodium chloride, the limiting ratio was 2. For sodium sulfate on the other hand, the ratio was 3, and for aluminum sulfate it was 5.

At the time when van ‘t Hoff found these whole number relations, Svante Arrhenius just happened to be visiting Amsterdam on his study tour. Arrhenius saw in these results the affirmation of his doctoral thesis, and could immediately supply the explanation. In aqueous solution, sodium chloride dissociates into sodium and chloride ions, so there are really two sets of solutes. Thus the total molality of the fully dissociated (ionised) solute will be double its undissociated value, and the freezing-point depression will be twice the expected amount.

By parallel reasoning, sodium sulfate dissociates into 3 aqueous ions (2 sodium ions and one sulfate ion) and in the case of aluminum sulfate there are 5 ions (2 aluminum ions and 3 sulfate ions).

It was compelling logic; the truth of Arrhenius’ thesis of ions in solution, and its implications for the understanding of chemical reactions and bonding, could no longer be denied.

– – – –

François-Marie Raoult’s work on solutions, and his discovery of the uncommon effect of common salt on the depression of freezing point, marked the start of a chain of circumstances that directly contributed to the founding of physical chemistry as a modern science. Not only did it provide affirmation of electrolytic dissociation and the existence of ions in solution, it also brought together the bright minds of Svante Arrhenius and Jacobus Henricus van ‘t Hoff, who with Wilhelm Ostwald were to propel physical chemistry into the modern age.

nobel vh

The Nobel Prize in Chemistry 1901 was awarded to JH van ‘t Hoff “in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

nobel sa

The Nobel Prize in Chemistry 1903 was awarded to Svante Arrhenius “in recognition of the extraordinary services he has rendered to the advancement of chemistry by his electrolytic theory of dissociation”.

nobel wo

The Nobel Prize in Chemistry 1909 was awarded to Wilhelm Ostwald “in recognition of his work on catalysis and for his investigations into the fundamental principles governing chemical equilibria and rates of reaction”.

photo credits: nobelprize.org