Posts Tagged ‘Josiah Willard Gibbs’

Dmitiri Konovalov (1856-1929) was a Russian chemist who made important contributions to the theory of solutions. He studied the vapor pressure of solutions of liquids in liquids and in 1884 published a book on the subject which gave a scientific foundation to the distillation of solutions and led to the development of industrial distillation processes.

On the subject of partially miscible liquids forming conjugate solutions, Konovalov in 1881 established the following fact: “If two liquid solutions are in equilibrium with each other, their vapor pressures, and the partial pressures of the components in the vapor, are equal.”

J. Willard Gibbs in America had already developed the concept of chemical potential to explain the behavior of coexistent phases in his monumental treatise On the Equilibrium of Heterogeneous Substances (1875-1878). Konovalov was unaware of this work, and independently found a proof on the basis of this astutely reasoned thought experiment:

«Consider Figure 77 shown above. Two liquid layers α and β in coexistent equilibrium are contained in a ring-shaped tube, and above them is vapor. If the pressure of either component in the vapor were greater over α than over β, diffusion of vapor would cause that part lying over β to have a higher partial pressure of the given component than is compatible with equilibrium. Condensation occurs and β is enriched in the specified component. By reason of the changed composition of β however, the equilibrium across the interface of the liquid layers is disturbed and the component deposited by the vapor will pass into the liquid α. The whole process now commences anew and the result is a never-ending circulation of matter round the tube i.e. a perpetual motion, which is impossible. Hence the partial pressures of both components are equal over α and β and therefore also their sum i.e. the total vapor pressure.»

– – – –

Equivalence of vapor pressure and chemical potential

Konovalov showed that the condition of equilibrium in coexistent phases was equality of vapor pressure p for each component. This is consistent with the concept of ‘generalized forces’, a set of intensive variables which drive a thermodynamic system spontaneously from one state to another in the direction of equilibrium. Vapor pressure is one such variable, and chemical potential is another. Hence Gibbs showed that chemical potential μ is a driver of compositional change between coexistent phases and that equilibrium is reached when the chemical potential of each component in each phase is equal. In shorthand the equilibrium position for partially miscible liquids containing components 1 and 2 in coexistent phases α, β and vapor can be stated as:

– – – –

P Mander, July 2020

osm01

I dare say most of you will remember this classroom demonstration, in which water passes through a semi-permeable membrane and causes the liquid level to rise in the stem of the thistle funnel. The phenomenon is called osmosis, and at equilibrium the osmotic pressure is equal to the hydrostatic pressure.

Historical background

This experiment has its origins way back in the mid-18th century, when a French clergyman named Jean-Antoine Nollet tied a piece of pig’s bladder over the mouth of a jar containing alcohol and immersed the whole thing in a vat of water. What prompted him to do this is not known, but we do know the result of his experiment. The bladder swelled up and ultimately burst from the internal pressure.

osm02

Jean-Antoine Nollet 1700-1770

Nollet published his findings in Recherches sur les causes de Bouillonement des Liquides (1748) in which he gave a correct interpretation of the phenomenon, which arises from the much more marked permeability of the bladder to water as compared with alcohol.

osm03

Moritz Traube 1826-1894

The actual measurement of osmotic pressure had to wait for over a century, until the German chemist Moritz Traube showed in 1867 that artificial semipermeable membranes could be made using gelatin tannate or copper ferrocyanide. Traube’s compatriot Wilhelm Pfeffer, a botanist, succeded in depositing the latter in the walls of a porous jar, which when filled with a sugar solution, connected to a mercury manometer and then plunged into pure water, provided a means of measuring osmotic pressures.

osm04

Wilhelm Pfeffer 1845-1920

Following Pfeffer’s osmotic pressure measurements using sucrose solutions, on which JH van ‘t Hoff based his famously flawed gaseous theory of solutions, there were two notable teams of experimentalists – one on each side of the Atlantic – which provided high quality osmotic pressure data to test the ideas of theoreticians. In the USA, Harmon Northrop Morse and Joseph Christie Whitney Frazer led a team at Johns Hopkins University, Baltimore, Maryland from 1901 to 1923. In Britain meanwhile, the aristocrat-turned-scientist Lord Berkeley and co-worker Ernald Hartley set up a private research laboratory near Oxford which operated (with gaps due to war service) from 1904 to 1928.

osm05

Ernald Hartley (1875-1947) Besides being a research chemist, Hartley was an amateur clarinetist who played in the Oxford orchestra for many years. The photo dates from 1925.

While Morse and Frazer used the same principle as Pfeffer, albeit with a more advanced electrochemical method of depositing the membrane in the pores, Berkeley and Hartley reversed the arrangement of solvent and solution, applying measured pressure to the latter to attain equilibrium.

osm06

– – – –

Theoretical development in Europe

In Europe, the rigorous application of thermodynamics to the phenomenon of osmosis started in 1887 with Lord Rayleigh, who combined the use of the ideal gas law PV = nRT with the idea of a reversible isothermal cycle of operations in which the sum of work in the complete cycle is zero.

osm07

Lord Rayleigh 1842-1919

Being essentially an attempt to provide hypothesis-free support to van ‘t Hoff’s troubled gaseous theory of solutions, the solute in Rayleigh’s cycle was a mole of ideal gas, which was first dissolved in the solution by applied pressure and then recovered from the solution by osmotic pressure to return the system to its original state.

Rayleigh’s approach, using a zero-sum cycle of operations, was thermodynamically sound and continued to form the basis of theoretical development in its next phase, which in Europe focused on vapor pressure following the influential papers of Alfred Porter in 1907 and Hugh Callendar in 1908.

osm08

Alfred Porter 1863-1939

By 1928, the theoretical model in JAV Butler’s popular textbook The Fundamentals of Chemical Thermodynamics was close to the familiar classroom demonstration of osmosis shown at the head of this post, in which the hydrostatic pressure acting on the solution counteracts the tendency of the solvent to pass through the semi-permeable membrane. At equilibrium, the hydrostatic pressure P is equal to the osmotic pressure.

osm09

JAV Butler 1899-1977

To obtain a thermodynamic relation for osmotic pressure in terms of vapor pressures, Butler uses Rayleigh’s idea of a reversible isothermal cycle of operations together with a semipermeable membrane in the form of a movable piston between the solution and the solvent:

osm10

The diagram shows a solution under hydrostatic pressure P which is equal to the osmotic pressure. Below the semi-permeable piston is pure solvent. Butler then applies the following argumentation:

1] Vaporize 1 mole of the pure solvent at its vapor pressure p0, and expand it reversibly so that the vapor pressure falls to p equal to the partial pressure of the solvent in the solution (Butler assumes that p is not affected by P applied to the solution). Condense the vapor into the solution. Since the work of vaporization and condensation cancel out, the only work done is the work of expansion. Assuming the vapor obeys the ideal gas law, the work (w) done is given by the textbook isothermal expansion formula

2] Now move the semi-permeable piston up against the pressure P until a quantity of solvent equivalent to 1 mole of vapor has passed through it. If the decrease in the volume of the solution is ΔV, the work done is PΔV.

The cycle is now complete and the system has returned to its original state. The total work done is zero and we may equate the two terms

(1)

where P is the osmotic pressure, ΔV is the partial molal volume of the solvent in the solution, p0 is the vapor pressure of the pure solvent and p is the vapor pressure of the solvent in the solution. This thermodynamically exact relation, which involves measured vapor pressures, is in good agreement with experimental determinations of osmotic pressure at all concentrations.

There is a great irony here, in that this equation is exactly the one that JH van ‘t Hoff found his way to in Studies in Chemical Dynamics (1884), before he abandoned his good work and went completely off-track with his gaseous theory of solutions.

ae01

JH van ‘t Hoff 1852-1911

– – – –

Theoretical development in America

In the US, the theory of the semipermeable membrane and the ‘equilibrium of osmotic forces’ was the work of one supremely gifted man, Josiah Willard Gibbs, who more or less single-handedly laid the theoretical foundations of chemical thermodynamics in his milestone monograph On the Equilibrium of Heterogeneous Substances.

J Willard Gibbs 1839-1903

But before delving into the powerful idea he introduced, let us return to the subject of equilibrium in a system subject to osmotic pressure with a set-up that is slightly different to that used by Butler. In the diagram below, the piston supplies pressure Psoln to the solution which is just enough to stop solvent passing through the membrane and bring about equilibrium at constant temperature; the osmotic pressure is defined as the excess pressure Psoln – p01.

osm13

The question can now be asked: Does the condition of osmotic equilibrium coincide with equality of a thermodynamic variable on either side of the membrane? Clearly it cannot be pressure or volume, nor can it be temperature since constant temperature does not prevent osmotic disequilibrium.

The P, V, T variables do not provide an affirmative answer, but in his monumental masterwork, Gibbs supplied one of his own invention which did – the chemical potential, symbolized μ. It is an intensive variable which acts as a ‘generalized force’, driving a system from one state to another. In the present context the force drives chemical components, capable of passing through a membrane, from a state of higher potential to a state of lower potential.

So given a membrane dividing solution from solvent and permeable only to the latter, we can understand the osmotic force driving the solvent (designated by subscript 1) through the membrane into the solution in terms of movement to a region of lower potential since

Now the difference in potential can be calculated according to the textbook formula

(2)

where x1 is the mole fraction (<1) of the solvent in the solution. To achieve equilibrium, the chemical potential of the solvent in the solution must be increased by the amount –RTlnx1 (a positive quantity since lnx1 is negative). This can be done by increasing the pressure on any solution exhibiting ideal behavior since

is positive (V1 is the partial molar volume of the solvent in the solution).

The osmotic pressure is defined as the excess pressure Psoln – p01. As can be seen from the diagram below, this is the pressure required to raise the chemical potential of the solvent in the solution so that it becomes equal to the chemical potential of the pure solvent.

Since the slope is V1, it follows that

(3)

Combining (2) and (3) and designating the osmotic pressure by P gives the desired equilibrium relation

This is exactly equivalent to equation (1) derived by Butler, since by his terminology

The two methods of proof are thus shown to be equivalent – we can regard osmotic pressure as the excess pressure required to increase either the chemical potential or the vapor pressure of the solvent in the solution. But Gibbs saw an advantage in using potentials, which he voiced in an 1897 letter to Nature entitled Semi-Permeable Films and Osmotic Pressure:

“The advantage of using such potentials in the theory of semi-permeable diaphragms consists … in the convenient form of the condition of equilibrium, the potential for any substance to which a diaphragm is freely permeable having the same value on both sides of the diaphragm.”

– – – –

A closer look at the equations applied to osmotic systems

The foregoing analysis has reached its conclusions by assuming that solutions in osmotic systems exhibit ideal behavior. On this assumption equation 2

can be interpreted as an ‘osmotic’ equation showing that excess pressure equal to –RTlnx1 needs to be applied to the solution to bring the system into osmotic equilibrium by stopping the passage of solvent into the solution. But there are no membrane-dependent terms in this equation, which can be re-written as

This simply shows the effect of adding a solute to a solvent. It should be noted that the equation is only valid at 1 atmosphere pressure, and this provides the clue to how the equation can properly be extended to apply to osmotic systems. If excess pressure ΔP is applied to the system an extra term is required to account for the fact that µ(solvent) is a function of pressure

We now have an equation that can be applied to osmotic systems. Since (δµ1/δP)T is the partial molar volume of the solvent in the solution (V1) the equation becomes

If V1 is positive it is evident that osmotic equilibrium is obtained when the condition

is met. This equation of condition allows us to conclude that solvent passes spontaneously into the solution, and that this process can be arrested by applying to the solution an excess pressure ΔP which we call the osmotic pressure. Note that this pressure is external in origin and arises by virtue of the fact that a semi-permeable membrane exists between solvent and solution rather than through a property of the membrane itself or component interactions with it*.

But what if the partial molar volume of the solvent in the solution (V1) is negative? This can in fact happen due to ionic attraction because V1 is defined not as a solvent volume but the change in volume when solvent is added to the solution. Referring to the above equation of condition, it can be seen that since RTlnx1 is always negative, equilibrium when V1 is negative can only be obtained when ΔP is also negative. Reduced pressure on the solution is equivalent in its effect to excess pressure on the solvent. This allows us to conclude that solvent passes spontaneously out of the solution and that this process can be arrested by applying to the solvent an excess pressure ΔP.

This reversal of what we commonly understand as osmosis might seem incredible, but it does happen under these conditions. It is important however not to view this as the spontaneous unmixing of a mixture. The membrane, the solvent phase and the negative partial molar volume of the solvent in the solution are part of the description of the total system, which will spontaneously move only in the direction of thermodynamic equilibrium and never away from it.

* This is consistent with Wilhelm Ostwald’s incontrovertible proof that osmotic pressure is independent of the nature of the semi-permeable membrane.

– – – –

Suggested further reading

Eric M Kramer and David R Myers: Five popular misconceptions about osmosis, American Journal of Physics 80, 694 (2012).

– – – –

P Mander March 2019, revised and extended January 2022

From the perspective of classical thermodynamics, osmosis has a rather unclassical history. Part of the reason for this, I suspect, is that osmosis was originally categorised under the heading of biology. I can remember witnessing the first practical demonstration of osmosis in a biology class, the phenomenon being explained in terms of pores (think invisible holes) in the membrane that were big enough to let water molecules through, but not big enough to let sucrose molecules through. It was just like a kitchen sieve, we were told. It lets the fine flour pass through but not clumps. This was very much the method of biology in my day, explaining things in terms of imagined mechanism and analogy.

And it wasn’t just in my day. In 1883, JH van ‘t Hoff, an able theoretician and one of the founders of the new discipline of physical chemistry, became suddenly convinced that solutions and gases obeyed the same fundamental law, pv = RT. Imagined mechanism swiftly followed. In van ‘t Hoff’s interpretation, osmotic pressure depended on the impact of solute molecules against the semipermeable membrane because solvent molecules, being present on both sides of the membrane through which they could freely pass, did not enter into consideration.

It all seemed very plausible, especially when van ‘t Hoff used the osmotic pressure measurements of the German botanist Wilhelm Pfeffer to compute the value of R in what became known as the van ‘t Hoff equation

where Π is the osmotic pressure, and found that the calculated value for R was almost identical with the familiar gas constant. There really did seem to be a parallelism between the properties of solutions and gases.

ae01

JH van ‘t Hoff (1852-1911)

The first sign that there was anything amiss with the so-called gaseous theory of solutions came in 1891 when van ‘t Hoff’s close colleague Wilhelm Ostwald produced unassailable proof that osmotic pressure is independent of the nature of the membrane. This meant that hypothetical arguments as to the cause of osmotic pressure, such as van ‘t Hoff had used as the basis of his theory, were inadmissible.

A year later, in 1892, van ‘t Hoff changed his stance by declaring that the mechanism of osmosis was unimportant. But this did not affect the validity of his osmotic pressure equation ΠV = RT. After all, it had been shown to be in close agreement with experimental data for very dilute solutions.

It would be decades – the 1930s in fact – before the van ‘t Hoff equation’s formal identity with the ideal gas equation was shown to be coincidental, and that the proper thermodynamic explanation of osmotic pressure lay elsewhere.

But long before the 1930s, even before Wilhelm Pfeffer began his osmotic pressure experiments upon which van ‘t Hoff subsequently based his ideas, someone had already published a thermodynamically exact rationale for osmosis that did not rely on any hypothesis as to cause.

That someone was the American physicist Josiah Willard Gibbs. The year was 1875.

gibbs

J. Willard Gibbs (1839-1903)

– – – –

Osmosis without mechanism

It is a remarkable feature of Gibbs’ On the Equilibrium of Heterogeneous Substances that having introduced the concept of chemical potential, he first considers osmotic forces before moving on to the fundamental equations for which the work is chiefly known. The reason is Gibbs’ insistence on logical order of presentation. The discussion of chemical potential immediately involves equations of condition, among whose different causes are what Gibbs calls a diaphragm, i.e. a semipermeable membrane. Hence the early appearance of the following section

to02

In equation 77, Gibbs presents a new way of understanding osmotic pressure. He makes no hypotheses about how a semipermeable membrane might work, but simply states the equations of condition which follow from the presence of such a membrane in the kind of system he describes.

This frees osmosis from considerations of mechanism, and explains it solely in terms of differences in chemical potential in components which can pass the diaphragm while other components cannot.

In order to achieve equilibrium between say a solution and its solvent, where only the solvent can pass the diaphragm, the chemical potential of the solvent in the fluid on both sides of the membrane must be the same. This necessitates applying additional pressure to the solution to increase the chemical potential of the solvent in the solution so it equals that of the pure solvent, temperature remaining constant. At equilibrium, the resulting difference in pressure across the membrane is the osmotic pressure.

Note that increasing the pressure always increases the chemical potential since

is always positive (V1 is the partial molar volume of the solvent in the solution).

– – – –

Europe fails to notice (almost)

Gibbs published On the Equilibrium of Heterogeneous Substances in Transactions of the Connecticut Academy. Choosing such an obscure journal (seen from a European perspective) clearly would not attract much attention across the pond, but Gibbs had a secret weapon. He had a mailing list of the world’s greatest scientists to which he sent reprints of his papers.

One of the names on that list was James Clerk Maxwell, who instantly appreciated Gibbs’ work and began to promote it in Europe. On Wednesday 24 May 1876, the year that ‘Equilibrium’ was first published, Maxwell gave an address at the South Kensington Conferences in London on the subject of Gibbs’ development of the doctrine of available energy on the basis of his new concept of the chemical potentials of the constituent substances. But the audience did not share Maxwell’s enthusiasm, or in all likelihood share his grasp of Gibbs’ ideas. When Maxwell tragically died three years later, Gibbs’ powerful ideas lost their only real champion in Europe.

It was not until 1891 that interest in Gibbs masterwork would resurface through the agency of Wilhelm Ostwald, who together with van ‘t Hoff and Arrhenius were the founders of the modern school of physical chemistry.

ts07

Wilhelm Ostwald (1853-1932) He not only translated Gibbs’ masterwork into German, but also produced a profound proof – worthy of Sadi Carnot himself – that osmotic pressure must be independent of the nature of the semipermeable membrane.

Although perhaps overshadowed by his colleagues, Ostwald had a talent for sensing the direction that the future would take and was also a shrewd judge of intellect – he instinctively felt that there were hidden treasures in Gibbs’ magnum opus. After spending an entire year translating ‘Equilibrium’ into German, Ostwald wrote to Gibbs:

“The translation of your main work is nearly complete and I cannot resist repeating here my amazement. If you had published this work over a longer period of time in separate essays in an accessible journal, you would now be regarded as by far the greatest thermodynamicist since Clausius – not only in the small circle of those conversant with your work, but universally—and as one who frequently goes far beyond him in the certainty and scope of your physical judgment. The German translation, hopefully, will more secure for it the general recognition it deserves.”

The following year – 1892 – another respected scientist sent a letter to Gibbs regarding ‘Equilibrium’. This time it was the British physicist, Lord Rayleigh, who asked Gibbs:

“Have you ever thought of bringing out a new edition of, or a treatise founded upon, your “Equilibrium of Het. Substances.” The original version though now attracting the attention it deserves, is too condensed and too difficult for most, I might say all, readers. The result is that as has happened to myself, the idea is not grasped until the subject has come up in one’s own mind more or less independently.”

Rayleigh was probably just being diplomatic when he remarked that Gibbs’ treatise was ‘now attracting the attention it deserves’. The plain fact is that nobody gave it any attention at all. Gibbs and his explanation of osmosis in terms of chemical potential was passed over, while European and especially British theoretical work centered on the more familiar and more easily understood concept of vapor pressure.

– – – –

Gibbs tries again

Although van ‘t Hoff’s osmotic pressure equation ΠV = RT soon gained the status of a law, the gaseous theory that lay behind it remained clouded in controversy. In particular, van ‘t Hoff’s deduction of the proportionality between osmotic pressure and concentration was an analogy rather than a proof, since it made use of hypothetical considerations as to the cause of osmotic pressure. Following Ostwald’s proof that these were inadmissible, the gaseous theory began to look hollow. A better theory was needed.

to04

Lord Kelvin (1824-1907) and Lord Rayleigh (1842-1919)

This was provided in 1896 by the British physicist, Lord Rayleigh, whose proof was free of hypothesis but did make use of Avogadro’s law, thereby continuing to assert a parallelism between the properties of solutions and gases. Heavyweight opposition to this soon materialized from the redoubtable Lord Kelvin. In a letter to Nature (21 January 1897) he charged that the application of Avogadro’s law to solutions had “manifestly no theoretical foundation at present” and further contended that

“No molecular theory can, for sugar or common salt or alcohol, dissolved in water, tell us what is the true osmotic pressure against a membrane permeable to water only, without taking into account laws quite unknown to us at present regarding the three sets of mutual attractions or repulsions: (1) between the molecules of the dissolved substance; (2) between the molecules of water; (3) between the molecules of the dissolved substance and the molecules of water.”

Lord Kelvin’s letter in Nature elicited a prompt response from none other than Josiah Willard Gibbs in America. Twenty-one years had now passed since James Clerk Maxwell first tried to interest Europe in the concept of chemical potentials. In Kelvin’s letter, with its feisty attack on the gaseous theory, Gibbs saw the opportunity to try again.

In his letter to Nature (18 March 1897), Gibbs opined that “Lord Kelvin’s very interesting problem concerning molecules which differ only in their power of passing a diaphragm, seems only to require for its solution the relation between density and pressure”, and highlighted the advantage of using his potentials to express van ‘t Hoff’s law:

“It will be convenient to use certain quantities which may be called the potentials of the solvent and of the solutum, the term being thus defined: – In any sensibly homogeneous mass, the potential of any independently variable component substance is the differential coefficient of the thermodynamic energy of the mass taken with respect to that component, the entropy and volume of the mass and the quantities of its other components remaining constant. The advantage of using such potentials in the theory of semi-permeable diaphragms consists partly in the convenient form of the condition of equilibrium, the potential for any substance to which a diaphragm is freely permeable having the same value on both sides of the diaphragm, and partly in our ability to express van’t Hoff law as a relation between the quantities characterizing the state of the solution, without reference to any experimental arrangement.”

But once again, Gibbs and his chemical potentials failed to garner interest in Europe. His timing was also unfortunate, since British experimental research into osmosis was soon to be stimulated by the aristocrat-turned-scientist Lord Berkeley, and this in turn would stimulate a new band of British theoreticians, including AW Porter and HL Callendar, who would base their theoretical efforts firmly on vapor pressure.

– – – –

Things Come Full Circle

As the new century dawned, van ‘t Hoff cemented his reputation with the award of the very first Nobel Prize for Chemistry “in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

The osmotic pressure law was held in high esteem, and despite Lord Kelvin’s protestations, Britain was well disposed towards the Gaseous Theory of Solutions. The idea circulating at the time was that the refinements of the ideal gas law that had been shown to apply to real gases, could equally well be applied to more concentrated solutions. As Lord Berkeley put it in the introduction to a paper communicated to the Royal Society in London in May 1904:

“The following work was undertaken with a view to obtaining data for the tentative application of van der Waals’ equation to concentrated solutions. It is evidently probable that if the ordinary gas equation be applicable to dilute solutions, then that of van der Waals, or one of analogous form, should apply to concentrated solutions – that is, to solutions having large osmotic pressures.”

Lord Berkeley’s landmark experimental studies on the osmotic pressure of concentrated solutions called renewed attention to the subject among theorists, who now had some fresh and very accurate data to work with. Alfred Porter at University College London attempted to make a more complete theory by considering the compressibility of a solution to which osmotic pressure was applied, while Hugh Callendar at Imperial College London combined the vapor pressure interpretation of osmosis with the hypothesis that osmosis could be described as vapor passing through a large number of fine capillaries in the semipermeable membrane. This was in 1908.

to05

H L Callendar (1863-1930)

So seventeen years after Wilhelm Ostwald conclusively proved that hypothetical arguments as to the cause of osmotic pressure were inadmissible, things came full circle with hypothetical arguments once more being advanced as to the cause of osmotic pressure.

And as for Gibbs, his ideas were as far away as ever from British and European Science. The osmosis papers of both Porter (1907) and Callendar (1908) are substantial in referenced content, but nowhere do either of them make any mention of Gibbs or his explanation of osmosis on the basis of chemical potentials.

There is a special irony in this, since in Callendar’s case at least, the scientific papers of J Willard Gibbs were presumably close at hand. Perhaps even on his office bookshelf. Because that copy of Gibbs’ works shown in the header photo of this post – it’s a 1906 first edition – was Hugh Callendar’s personal copy, which he signed on the front endpaper.

to06

Hugh Callendar’s signature on the endpaper of his personal copy of Gibbs’ Scientific Papers, Volume 1, Thermodynamics.

– – – –

Epilogue

Throughout this post, I have made repeated references to that inspired piece of thinking by Wilhelm Ostwald which conclusively demonstrated that osmotic pressure must be independent of the nature of the membrane.

Ostwald’s reasoning is so lucid and compelling, that one wonders why it didn’t put an end to speculation on osmotic mechanisms. But it didn’t, and hasn’t, and probably won’t.

Here is how Ostwald presented the argument in his own Lehrbuch der allgemeinen Chemie (1891). Enjoy.

ts08

“… it may be stated with certainty that the amount of pressure is independent of the nature of the membrane, provided that the membrane is not permeable by the dissolved substance. To understand this, let it be supposed that two separating partitions, A and B, formed of different membranes, are placed in a cylinder (fig. 17). Let the space between the membranes contain a solution and let there be pure water in the space at the ends of the cylinder. Let the membrane A show a higher pressure, P, and the membrane B show a smaller pressure, p. At the outset, water will pass through both membranes into the inner space until the pressure p is attained, when the passage of water through B will cease, but the passage through A will continue. As soon as the pressure in the inner space has been thus increased above p, water will be pressed out through B. The pressure can never reach the value P; water must enter continuously through A, while a finite difference of pressures is maintained. If this were realised we should have a machine capable of performing infinite work, which is impossible. A similar demonstration holds good if p>P ; it is, therefore, necessary that P=p; in other words, it follows necessarily that osmotic pressure is independent of the nature of the membrane.”

(English translation by Matthew Pattison Muir)

– – – –

P Mander July 2015

afr01

If the man who almost single-handedly invented chemical thermodynamics – the American mathematical physicist Josiah Willard Gibbs – had owned an automobile, he would have had no trouble figuring out the action of antifreeze.

“The problem reduces to consideration of a binary solution in equilibrium with solid solvent,” I can hear old Josiah saying. “Such a thermodynamic system has two degrees of freedom, so at constant pressure there must be a relation between temperature and composition.”

And indeed there is. The relation corresponds to the observed depression of the freezing point of a solvent by a solute. What’s more, its exact form confirms how antifreeze really works.

– – – –

Computing chemical potential

We have Josiah Willard Gibbs to thank for introducing the concept of chemical potential (μ) as a sort of generalized force driving the flow of chemical components between coexistent phases.

When the phases are in equilibrium at constant temperature and pressure, the chemical potential of any component has the same value in each phase

The key point to note here is that μi is the chemical potential of component i in an arbitrary state, i.e. in a mixture of components. In order to compute this potential we need to know two things: the chemical potential of the pure substance μi0 at a pressure p (such as that of the atmosphere), and the mole fraction (xi) of the component in the mixture. Assuming an ideal solution, use can then be made of the textbook formula

dce12  …(1)

With pressure and temperature fixed, this equation has a single variable (xi), from which we can draw the conclusion that the variation in chemical potential of a component in an ideal solution is determined solely by its own mole fraction.

The significance of this fact can be appreciated by considering the following diagrams

Here is water in equilibrium with ice at 273K. The chemical potentials of the solid and liquid phases are equal; there is no net driving force in either direction. Now consider the effect of adding an antifreeze agent to the liquid phase

afr04

Assuming the temperature held constant at 273K, the addition of antifreeze reduces the mole fraction of water, lowering its chemical potential in accordance with equation 1. The coexistent solid phase now has a higher potential, providing the driving force to transform ice into water. Since the temperature is held constant, this equates to the lowering of the freezing point of water in the mixture.

– – – –

Deducing a formula for freezing-point depression

To obtain a formula for the freezing point of water in a solution containing antifreeze, we start with the equilibrium relation

where the zero superscript indicates a standard potential, i.e. that the solid phase consists of pure ice whose mole fraction x is unity. Substituting the left hand side with

we obtain

which after differentiation with respect to temperature at constant pressure and subsequent integration yields the formula for the freezing point of water in a solution containing antifreeze at 1 atmosphere pressure:

The terms on the right are the molar enthalpy of fusion of water (ΔHf0), the freezing point of pure water (Tf0), the gas constant R and the mole fraction of water (xH2O) in the solution containing antifreeze.

The latter is the only variable, confirming that the freezing point of water in a solution containing antifreeze is determined solely by the mole fraction of water in the mixture – in other words the extent to which the water is diluted by the antifreeze agent.

This is how antifreeze works. There is nothing active about its action. It exerts its effect passively by being miscible and thereby reducing the mole fraction of water in the liquid mixture. There’s really nothing more to it than that.

– – – –

Using the formula

Values for constants

Enthalpy of fusion of water ΔHf0 = 6.02 kJmol-1
Freezing point of pure water Tf0 = 273.15 K
Gas constant R = 0.008314 kJmol-1K-1

Example

651 grams of the antifreeze agent ethylene glycol (molecular weight 62.07) are added to 1.5 kg of water (molecular weight 18.02). What is the freezing point of water in this solution?

Strategy

1. Calculate the mole fraction of water in the solution

Number of moles of water = 1500/18.02 = 83.2
Number of moles of ethylene glycol = 651/62.07 = 10.5
Mole fraction of water = 83.2/(83.2 + 10.5) = 0.89

2. Calculate the freezing point of water in the solution

The solution will give antifreeze protection down to 261.65K or –11.5°C

– – – –

P Mander March 2015


gibbs

It was the American mathematical physicist Josiah Willard Gibbs who introduced the concepts of phase and chemical potential in his milestone monograph On the Equilibrium of Heterogeneous Substances (1876-1878) with which he almost single-handedly laid the theoretical foundations of chemical thermodynamics.

In a paragraph under the heading “On Coexistent Phases of Matter” Gibbs mentions – in passing – that for a system of coexistent phases in equilibrium at constant temperature and pressure, the chemical potential μ of any component must have the same value in every phase.

This simple statement turns out to have considerable practical value as we shall see. But first, let’s go through the formal proof of Gibbs’ assertion.

An important result

pe01

Consider a system of two phases, each containing the same components, in equilibrium at constant temperature and pressure. Suppose a small quantity dni moles of any component i is transferred from phase A in which its chemical potential is μ’i to phase B in which its chemical potential is μ”i. The Gibbs free energy of phase A changes by –μ’idni while that of phase B changes by +μ”idni. Since the system is in equilibrium at constant temperature and pressure, the net change in Gibbs free energy for this process is zero and we can write

hence

This result can be generalized for any number of phases: for a system in equilibrium at constant temperature and pressure, the chemical potential of any given component has the same value in every phase.

– – – –

Visualizing variance

The equality of pressure P, temperature T and component chemical potentials μn between coexistent phases in equilibrium provides a convenient way to visualize variance, or the number of degrees of freedom a system possesses. For example, the triple point of a single component system can be visualized as the array

where the solid, liquid and vapor phases are indicated by one, two and three primes respectively.

Each row represents a single variable, so the number of rows equates to the total number of variables. Each column lists the variables in a single phase. All but one of these may be independently varied; the last is determined by the Gibbs-Duhem relation

There are one of these for each phase, so the number of columns equates to the number of relations (=constraints) to which the system variables are subject. The variance, or number of degrees of freedom (f) of the system is defined

For arrays of the kind presented above, this transposes into

For the triple point of a single component system, there are three rows and three columns, so f =0. With zero degrees of freedom, the triple point is not subject to independent variation and is represented by a fixed point in the PT plane.

The above rule implies that a system of coexistent phases in equilibrium cannot have more phases than intensive system variables.

– – – –

Generating useful equations

For a component present in any pair of coexistent phases in equilibrium at constant temperature and pressure, the chemical potential of that component has the same value in both phases

From this general relation, equations may be deduced for computing various properties of thermodynamic systems such as ideal solutions, for example the elevation of boiling point, the depression of freezing point, and the variation of the solubility of a solute with temperature.

The key point to grasp is that μi is the chemical potential of component i in an arbitrary state, i.e. in a mixture of components. In order to compute this potential we need to know two things: the chemical potential of the pure substance μi0 at a pressure p (such as that of the atmosphere), and the mole fraction (xi) of the component in the mixture. Assuming an ideal solution, use can then be made of the textbook formula

 … (1)

where for a given phase, μi is the arbitrary chemical potential of i in the mixture, μ°i is the chemical potential of the pure substance, and xi is the mole fraction of the component.

As an example, let us take the equilibrium relation

 …(2)

where the chemical potential of the solid solvent is necessarily the standard potential because the mole fraction x is unity. The above relation will generate an equation for the depression of the solvent freezing point in a solution at a fixed pressure (p).

Substituting (1) for the liquid phase in (2) gives

where by convention the subscript 1 refers to the solvent. Differentiating with respect to T at constant pressure

using the quotient rule for ΔG/T gives

 … (3)

Now since

equation (3) simplifies to

Integrating from the pure solvent state, where the mole fraction x1=1 and T0fus is the freezing point of the pure solvent, to the solution state where the mole fraction x1= x1 and Tfus is the freezing point of the solvent in the solution

yields the equation for the depression of the solvent freezing point in a solution at a fixed pressure (p)

Since x1<1 in a solution, the logarithm is negative and therefore the freezing point of the solvent in the solution must be lower than the freezing point of the pure solvent.

– – – –

Ok, so maybe that wasn’t the simplest procedure for generating a useful thermodynamic equation. But the point to be made here is that the same procedure applies in the other cases, so you only need to understand the principle once.

For example, the equation for elevation of solvent boiling point in solution with a non-volatile solute at a fixed pressure (p) is

The similarity to the previous equation is evident.

– – – –

P Mander February 2015