Posts Tagged ‘London’

tcr01

Tottenham Court Road, London WC2 in 1880

In the study of chemical reactions, thermodynamics enables us to calculate changes in state functions such as enthalpy, entropy and free energy, and determine the direction in which a reaction is spontaneous. But it tells us nothing about the speed of reaction; that is the province of chemical kinetics. Thermodynamics and chemical kinetics can be viewed as complementary disciplines, which together provide the means by which the course of a reaction can be elucidated.

A classic case which exemplifies the dual application of thermodynamics and chemical kinetics is the Tottenham Court Road gas explosion which occurred in July 1880.

– – – –

The incident

It was a time of great expansion of the network for gas pipeline transport in London. Gas lighting of streets and buildings was well-established, but now the gas stove was about to become a commercial success, and new gas mains were being laid to supply the anticipated demand.

The Gas Light and Coke Company, which supplied coal gas from a number of gasworks in London, had laid a new 1.2 kilometer (0.75 mile) section of main from Bedford Square to Fitzroy Square, the pipeline crossing Tottenham Court Road at the junction with Bayley Street and running along Percy Street before turning north along the entire length of Charlotte Street.

tcr02

On the evening of Monday 5th July 1880, workmen were preparing to connect the new main to the existing network at Bayley Street. Unknown to them however, a faulty valve at the other end of the new main was leaking coal gas, which had mingled with the air in the pipe to form an explosive mixture. In a presumed act of carelessness by one of the workmen at Bayley Street, a flame or other ignition source came in close proximity to the pipe.

The gas mixture detonated and the explosion ripped through the entire length of the new 1.2 kilometer main. A number of people were killed and injured in the blast, and 400 houses were damaged by flying debris. The entire incident lasted about 12 seconds.

– – – –

The investigation

A singularly worrying feature of the Tottenham Court Road gas explosion was that it had ripped through over a kilometer of pipeline in a matter of seconds. How could this happen? And how easily could this happen again? For the safety of millions of Londoners, answers had to be found.

tcr03

Augustus Vernon Harcourt (1834-1919)

The authorities turned to one the country’s leading chemists, Augustus Vernon Harcourt, who was conducting a program of research in chemical kinetics at Oxford University. Together with his student Harold Baily Dixon (1852-1930), Harcourt began to investigate the rates of propagation of gaseous explosions.

In what sounds like a rather risky experiment, they set up long metal pipes under the Dining Hall of Balliol College Oxford to measure the speed with which explosion waves travel when a mixture of air and coal gas detonates.

tcr04

The Dining Hall of Balliol College, Oxford

Twenty three years earlier, the German chemist Robert Bunson (of Bunsen burner fame) had investigated the rate of propagation for the ignition of coal gas and oxygen and concluded that the flame front velocity was less than 1 meter per second. From the experiments at Balliol however, Harcourt and Dixon arrived at a very different answer. In a report to the Board of Trade on the Tottenham Court Road blast, Harcourt concluded that the velocity of a coal gas/air explosion wave exceeded 100 yards per second (91 meters per second).

From the safety point of view, Harcourt and Dixon had shown how absolutely essential it was to prevent air becoming mixed with coal gas in the gas pipeline network. But it would take decades before sufficient theoretical progress was made to allow a detailed understanding of what exactly happened in the great gas explosion of 1880.

– – – –

Branching chains

The development of chemical kinetics involved many different contributors in the decades after Harcourt and Dixon’s pioneering work at Oxford. Theories were advanced on several different aspects of the subject, but one piece of theoretical work had particular relevance to the study of explosions.

In 1921, a Danish physical chemist by the name of Jens Anton Christiansen (1888-1969) completed his PhD studies in reaction kinetics at Copenhagen University. In his thesis he incorporated an idea first suggested by Bodenstein in 1913 and introduced the term “kædereaktion”. This term, and the conceptual idea behind it, attracted considerable attention and the equivalent English expression “chain reaction” came into use. Two years later, Christiansen and the Dutch physicist Hendrick Anthony Kramers (1894-1952) published a paper in which they suggested the possibility of branching chains. Their idea was that a chain reaction could involve steps in which one chain carrier (an atom or radical) might not only regenerate itself but also produce an additional chain carrier. If such chain branching occurred, the number of chain carriers could increase extremely rapidly and result in an explosion.

The idea proved to be well-founded, and was further developed by Nikolai Semyonov (1896-1986) and Cyril Norman Hinshelwood (1897-1967). Their work also showed that chain carriers were removed at the walls of the reaction vessel. If the rate of removal of the chain carriers was fast enough to counteract the effect of chain branching, a steady reaction ensued. But if the removal rate could not keep pace with the chain branching rate, an explosion would result.

On the basis of their thinking, the reaction rate expression assumed the form

tcr05

where F is a function of the concentrations characteristic of the chain branching step, fa is a function determining the removal of chain carriers, and fb is a function expressing the branching nature of the chain reaction.

In steady reaction conditions, fa is sufficiently greater than fb. But if conditions change so that fa and fb converge, a point will be reached where the difference between them becomes vanishingly small. The reaction rate will soar towards infinity however small F may be, and the evolution of heat in the system will be so great as to cause an explosion.

tcr06

Semyonov and Hinshelwood were awarded the Nobel Prize in 1956 for their work on reaction rates

– – – –

Piecing the facts together

From the information contained in newspaper reports, and the application of kinetic theory and thermodynamics, it is possible to arrive at a likely explanation of why the great gas explosion of 1880 happened in the way it did.

It is known that coal gas leaked into the newly laid main at its northern end, and that detonation occurred at the other end in Bayley Street. From this it can be inferred that the entire pipeline between these two points contained coal gas admixed with the air that the pipe originally contained. On the assumption that the leaking valve was introducing coal gas at a modest and steady rate, it is likely that the partial pressures of the gases in the pipe were being brought into equilibrium as the coal gas seeped along the pipe.

Newspaper reports stated that the new main between Bayley Street and Fitzroy Square was a metal pipe of fixed (3 ft/0.91 m) diameter. The ratio of the surface area to the enclosed volume or, which is the same thing, the ratio of the circumference to the cross-sectional area

tcr07

was therefore constant along its length*.

*assuming the geometry of the bend had no effect on fa. This point is examined later.

At the moment of detonation at Bayley Street, it is a reasonable hypothesis that the function F in the Semyonov-Hinshelwood rate expression was not subject to large variations along the length of the new main. The same can be said of fb, and since the ratio of the circumference to the cross-sectional area of the pipeline was constant, the function fa determining the removal of chain carriers at the walls of the pipe was also constant. In short, the reaction rate expression applying at the end of the pipe – where detonation is known to have occurred – applied at every other point along its length.

At this juncture, it is convenient to recall the combustion reactions of the principal components of coal gas, namely hydrogen, methane and carbon monoxide:

tcr08

We observe that from a stoichiometric perspective, none of the reactions involves an increase in volume; in fact two of them result in a decrease. The overall entropy of reaction is negative, and this tells us that the conversion of reactants into products, however rapidly it took place, could not in itself have resulted in any pressure increase under the constant volume conditions of the pipe.

From an enthalpy of reaction perspective however, the situation is very different. The above reactions are all significantly exothermic processes – the calorific value of coal gas is typically around 20 megajoules per cubic meter. In the circumstances of detonation, the virtually instantaneous release of a large amount of heat would result in a similarly rapid rise in temperature, causing sudden compression of the adjacent volume element in the pipe and heating it to the point of detonation. This sequence would be repeated from one volume element to the next, with a wave of adiabatic compression intensifying the pressure as it traversed the pipe. A continuously propagating explosion would then follow the pressure wave along the course of the main as the pipe ruptured.

– – – –

The bend in the pipe

The junction of Percy Street with Charlotte Street was the only point along the entire length of the new main which deviated from a straight line. Here the pipeline executed a 90 degree turn, and it raises the question of how a detonation wave can go round corners. The exact construction of the bend is not recorded, but it is likely that an elbow joint was used.

tcr10

Geometrically, the bend itself is a quadrant of a torus, whose geometry is such that regardless of whether the elbow has a long or short major radius R, the ratio of the surface area to the enclosed volume is constant

tcr11

This is the same ratio as that of the straight pipe. The bend at the junction of Percy Street with Charlotte Street introduced no changes to the fa term in the Semyonov-Hinshelwood rate expression, and thus the conditions for detonation were met at every point of the bend.

So the 90 degree elbow made no difference to the detonation wave. It simply turned sharp right and carried on up to Fitzroy Square, at a velocity of almost 100 meters per second.

– – – –

Estimating the power of the explosion

It is known from the analysis of coal gas that one volume of coal gas requires approximately 10 volumes of air for its complete combustion. This means that an explosive mixture with air cannot be formed at coal gas concentrations much above 9%, since there would be insufficient oxygen to support the necessary rate of reaction. Below 7% coal gas concentration, the mixture is also non-explosive, for other reasons.

An average coal gas concentration of 8% throughout the pipeline is therefore a fair estimate, and seems plausible given that the new main contained air when laid and that coal gas was introduced at a modest rate from a leaking valve. We know that the new 1.2 kilometer main had a radius of 0,455 meters, giving a total volume of 780 cubic meters. At the moment of detonation, coal gas is estimated to have filled 8% of this volume i.e. 62 cubic meters. The calorific value of coal gas is typically 20 megajoules per cubic meter, so we can conclude that the Tottenham Court Road gas explosion released around 1,240 MJ in the 12 seconds it took to traverse the pipeline. The power of the explosion was therefore 1240/12 = 103 MW.

tcr12

The 3×2 flagstones used on London sidewalks weigh around 70 kg each. The energy released by the Great Gas Explosion of 1880 was sufficient to blast 59,000 flagstones to a height of 30 meters.

– – – –

Contemporary accounts

tcr13

Charlotte Street after the blast

Newspaper accounts remarked on the rapid progression of the explosion, with one commenting:

“[The main pipe at Bayley Street] burst with a terrific report, and sheets of flame issued suddenly from the earth. Instantly the report seemed to run along Percy Street, which was torn up for sixty or seventy yards (ca. 60 meters), the paving stones flying on each side against the houses.”

“At the corner of Charlotte Street the basements of two houses were shattered. The paving stones were here also sent into the air, falling on and through the roofs of the houses opposite. Further on, the pipe burst again, near the corner of Bennett Street, where there is a large gap in the roadway. Another burst-up occurred near the corner of Howland Street, and at the corner of London Street (now Maple Street) still further on…”

One eye-witness was in Percy Street when the explosion occurred. He experienced the effect of not only the pressure wave from the bursting pipe, but also the decompression wave which followed in its wake:

“I was walking down Percy Street, when I felt the ground shaking under my feet. I immediately saw the centre of the street rising in the air. A tremendous report followed, and then there was a shower of bricks and stones. I felt myself lifted from the ground, and the next moment I was lying among the debris at the bottom of a deep hole in the roadway.”

– – – –

P Mander December 2015

Advertisements
Anthony Carlisle (left) and William Nicholson, London, May 1800

Anthony Carlisle (left) and William Nicholson, London, May 1800

The rise of physical chemistry in the 19th century has at its root two closely connected events which took place in the final year of the 18th century. In 1800, Alessandro Volta in Lombardy invented an early form of battery, known as the Voltaic pile, which Messrs. Carlisle and Nicholson in England promptly employed to discover electrolysis.

Carlisle and Nicholson’s discovery that electricity can decompose water into hydrogen and oxygen caused as big a stir as any scientific discovery ever made. It demonstrated the existence of a relationship between electricity and the chemical elements, to which Michael Faraday would give quantitative expression in his two laws of electrolysis in 1834. Faraday also introduced the term ‘ion’, a little word for a big idea that Arrhenius, Ostwald and van ‘t Hoff would later use to create the foundations of modern physical chemistry in the 1880s.

About this post

The story of Carlisle and Nicholson’s discovery properly begins with a letter that Volta wrote on March 20th, 1800 to the President of the Royal Society in London, Sir Joseph Banks. The leaking of that letter (which contained confidential details of the construction of the Voltaic pile) to among others Anthony Carlisle, forms the narrative of my previous post “The curious case of Volta’s leaked letter”.

This post is concerned with the construction details themselves, which have their own story to tell, and the experimental activities of Messrs. Carlisle and Nicholson after they had seen the letter, which were reported in July 1800 by Nicholson in The Journal of Natural Philosophy, Chemistry & the Arts – a publication that Nicholson himself owned.

The Voltaic pile

“The apparatus to which I allude, and which will no doubt astonish you, is only the assemblage of a number of good conductors of different kinds arranged in a certain manner.”
Alessandro Volta’s letter to Joseph Banks, introducing the Voltaic pile

Volta’s arrangement comprised a pair of different metals in contact (Z = Zinc, A = Silver), followed by a piece of cloth or other material soaked in a conducting liquid; this ‘module’ could be repeated an arbitrary number of times to build a pile in the manner illustrated below.

cn02

The Voltaic Pile: Volta’s own illustration enclosed with the letter to Banks

Volta believed the electrical current was excited by the mere contact of two different metals, and that the liquid-soaked material simply conducted the electricity from one metal pair to the next. This explains why Volta’s illustration shows the metals always in pairs – note the silver disc below the zinc at the bottom of the pile and a zinc disc above the silver at the top.

It was later shown that these terminal discs are unnecessary: the actual electromotive unit is zinc-electrolyte-silver. Volta’s arrangement can therefore be seen as a happy accident, in that his mistaken belief regarding the generation of electromotive force led him to the correct arrangement of repeated electrochemical cells, in which the terminal discs act merely as connectors for the external circuit wires.

Volta’s pile thus contained one less generating unit than he thought; it also caused the association of the two metals with the positive and negative poles of the battery to be reversed.

– – – –

Enter Mr. Carlisle

cn03

London’s Soho Square in the early 19th century. Animals were often driven to market through the square.

The president of the Royal Society, Sir Joseph Banks, lived in a house at No.32 Soho Square. Here he entertained all the leading members of the scientific establishment, and it was here in April 1800 that he yielded to temptation and disclosed the contents of Signor Volta’s confidential letter to certain chosen acquaintances. Among them was another resident of Soho Square, the fashionable surgeon Anthony Carlisle, who had just moved in at No.12.

Volta’s announcement of his invention made an instant impression on Carlisle, who immediately arranged for his friend the chemist William Nicholson to look over the letter with him, after which Carlisle set about constructing the apparatus according to the instructions in Volta’s letter.

Nicholson records in his paper that by 30th April 1800, Carlisle had completed the construction of a pile “consisting of 17 half crowns, with a like number of pieces of zinc, and of pasteboard, soaked in salt water”. Using coinage for the silver discs was smart thinking by Carlisle – with a diameter of 1.3 inches (3.3 cm), the half crown was an ideal size for the purpose, and was made of solid silver.

cn04

Silver half crown, diameter 1.3 inches

From Nicholson’s account, it seems likely that Carlisle obtained a pound (approx. ½ kilo) of zinc from a metal dealer called John Tappenden who traded from premises just opposite the church of Saint Vedast Foster Lane, off Cheapside in the City of London. A pound of zinc was enough to make 20 discs of the diameter of a half crown.

Having constructed the pile exactly according to Volta’s illustration above, Carlisle and Nicholson were ready to begin their experiments. But before describing their work, it is pertinent to draw attention to the way in which they approached their program of research, which was quite unlike that of Volta.

– – – –

Differences in approach

Alessandro Volta’s letter to Joseph Banks, apart from briefly detailing the construction of the pile, comprises a lengthy account of electric shocks administered to various parts of the human anatomy and the nature of the resulting sensations.

Volta does first prove with a charging condenser that the pile generates electricity, but having ascertained this fact, he makes no further observations on the pile, other than asserting that the device has “an inexhaustible charge, a perpetual action” and later commenting: “This endless circulation of the electric fluid (this perpetual motion) may appear paradoxical and even inexplicable, but it is no less true and real;”

cn05

One of Volta’s arrangements, using electrodes dipped in bowls of water for delivering electric shocks to the hands. If Volta had just put both electrodes in one bowl, he would have discovered electrolysis.

Volta appears not to have observed that the zinc discs quickly oxidise during operation; perhaps it was because he enclosed the pile in wax to prevent it from drying out. But nonetheless it seems strange that Volta did not discover during the course of his many experiments that the zinc discs do not have an unlimited lifetime.

William Nicholson also found it strange, commenting in his paper, “I cannot here look back without some surprise and observe that … the rapid oxidation of the zinc should constitute no part of his [Volta’s] numerous observations.”

Reading Volta’s communication to Banks, one is struck by the brevity of the text pertaining to his fabulous invention, and contrarily, the abundant descriptions of the shocks he administered with it. Volta is demonstrably more occupied with how humans experience the shocks that the pile delivers, than with the pile itself.

With Carlisle and Nicholson, the situation is very much the reverse. Having given themselves an obligatory shock with their newly-built machine, the attention immediately shifts to the pile itself. Their experiments and attendant reasoning show an approach that is more analytical in character.

– – – –

The path to discovery

On May 1st, 1800, Carlisle and Nicholson set up their pile – most likely in Carlisle’s house at 12 Soho Square – and began by forming a circuit with a steel wire and passing a current through it. To assist contact with the wire, a drop of river water was placed on the uppermost disc. As soon as this was done, Nicholson records

“Mr. Carlisle observed a disengagement of gas round the touching wire. This gas, though very minute in quantity, evidently seemed to me to have the smell afforded by hydrogen”

It is amazing that Nicholson was able to identify hydrogen from such a minute sample. But even more amazing was the thought that occurred to him next

“This [release of hydrogen gas], with some other facts, led me to propose to break the circuit by the substitution of a tube of water between two wires.”

Nicholson does not say what those other facts are, but he does record that on the first appearance of hydrogen gas, both he and Carlisle suspected that the gas stemmed from the decomposition of water by the electric current. Following that wonderfully intuitive piece of reasoning, Nicholson’s suggestion can be seen as a natural next step in their investigation.

cn06

William Nicholson (1753-1815)

On 2nd May, Carlisle and Nicholson began their experiment using brass wires in a tube filled with river water. A fine stream of bubbles, identifiable as hydrogen, immediately arose from the wire attached to the zinc disc, while the wire attached to the silver disc became tarnished and blackened by oxidation.

This was an unexpected result. Why was the oxygen, presumably formed at the same place as the hydrogen, not evolved at the same wire? Why and how does the oxygen apparently burrow through the water to the other wire where it produces oxidation of the metal? This finding, which according to Nicholson “seems to point at some general law of the agency of electricity in chemical operations” was to occupy physical chemists for the next 100 years…

Meanwhile, Carlisle and Nicholson responded to their new experimental finding with another wonderfully intuitive piece of reasoning. What would be the effect, they asked, of using electrodes made from a metal that resisted oxidation, such as platinum?

Immediately they set about finding the answer. With electrodes fashioned from platinum wire they observed a plentiful stream of bubbles from the wire attached to the zinc disc and a less plentiful stream from the wire attached to the silver disc. No tarnishing of the latter wire was seen. Nicholson wrote

“It was natural to conjecture, that the larger stream was hydrogen, and the smaller oxygen.”

The conjecture was correct. On a table top in Soho Square, Carlisle and Nicholson had successfully decomposed water into its constituent gases by the use of the Voltaic pile, and had thereby discovered electrolysis – a technique which was to prove of immeasurable importance to industry.

vol04

Anthony Carlisle (1768-1840)

– – – –

Quantitative analysis

Carlisle and Nicholson realised that the decomposition of water using platinum wires “offered a means of obtaining the gases separate from each other”. This not only provided a new way of producing these gases, but also opened up a new avenue of analysis. By measuring the relative volumes of hydrogen and oxygen evolved from the wires, they could compare their result with known data for water. [It should be noted that Carlisle and Nicholson did not have the benefit of Avogadro’s law, which was not formulated until 1811].

Carlisle and Nicholson subjected water to electrolysis for 13 hours, after which they determined the weight of water displaced by each gas in the respective tubes. The weights were in the proportion 142:72 in respect of hydrogen and oxygen; this is very close to the whole number ratio of 2:1 which was known to be the proportions in which these gases combine to produce water. Here then was quantitative evidence that the hydrogen and oxygen observed in Carlisle and Nicholson’s electrolytic cell originated from the decomposition of water.

– – – –

The experimental observations – explained

It was that drop of water placed on the uppermost disc to assist contact with the metal wire that opened the path to discovery. The fact that gas was formed “round the touching wire” indicates that the contact was intermittent: when the wire was in contact with the water drop but not the uppermost disc, a miniature electrolytic cell was formed and hydrogen gas was evolved.

Illustrating this graphically requires some qualifying explanation, since as already mentioned the terminal discs of the Voltaic pile assembled according to Volta’s instructions were unnecessary, and acted merely as conductors. Electrochemically, the uppermost disc of Carlisle and Nicholson’s Voltaic pile was a silver cathode, connected to the water drop via a zinc disc; the lowest disc in the pile was a zinc anode, which via an interposed silver disc was connected to the water drop via a steel wire. The electrochemical processes can be illustrated as follows

Carlisle and Nicholson’s first experiment, May 1st, 1800

The drop of water shown in blue acted as an electrolytic cell supplied by a zinc anode (the uppermost disc) and a steel cathode (the wire). When current was passed through this cell at moments when the wire lost contact with the zinc disc, reduction of hydrogen ions produced bubbles of hydrogen at the cathode, i.e. around the wire, as Carlisle observed. At the anode, the oxygen formed would have immediately oxidised the zinc with no visible evolution of gas.

The evolution of hydrogen gas between each pair of discs in the Voltaic pile, i.e. on the side in communication with the electrolyte, was also noted in Nicholson’s paper, as was the erosion of the zinc anode.

– – – –

And so to the experimental set-up with which Carlisle and Nicholson successfully decomposed water into its constituent gases by the use of the Voltaic pile, and thereby discovered electrolysis. Electrochemically, the uppermost disc in the pile was a silver cathode, which via an interposed zinc disc was connected to the water in the tube via a platinum electrode; the lowest disc in the pile was a zinc anode, which via an interposed silver disc was connected to the water in the tube via a platinum electrode. The electrochemical processes can be illustrated as follows

cn08

Carlisle and Nicholson’s electrolysis of water, May 1800

The tube of water shown in blue acted as an electrolytic cell supplied by a platinum anode and cathode. When current was passed through this cell, reduction of hydrogen ions produced bubbles of hydrogen at the cathode, while the oxidation of water produced hydrogen ions and bubbles of oxygen at the anode.

The evolution of hydrogen gas between each pair of discs in the Voltaic pile, i.e. on the side in communication with the electrolyte, was also noted in Nicholson’s paper, as was the erosion of the zinc anode.

– – – –

Mouse-over links to original papers mentioned in this post

Volta’s letter to Banks (begins on page 289)

Nicholson’s paper (begins on page 179)

– – – –

P Mander September 2015