Posts Tagged ‘redox reaction’

William Nicholson and Anthony Carlisle

May 1800: Carlisle (left) and Nicholson discover electrolysis

The two previous posts on this blog concerning the leaking of details about the newly-invented Voltaic pile to Anthony Carlisle and William Nicholson, and their subsequent discovery of electrolysis, are more about the path of temptation and birth of electrochemistry than about classical thermodynamics. In fact there was no thermodynamic content at all.

So by way of steering this set of posts back on track, I thought I would apply contemporary thermodynamic knowledge to Carlisle and Nicholson’s 18th century activities, in order to give another perspective to their famous experiments.

– – – –

The Voltaic pile

cn02

Z = zinc, A = silver

In thermodynamic terms, Alessandro Volta’s fabulous invention – an early form of battery – is a system capable of performing additional work other than pressure-volume work. The extra capability can be incorporated into the fundamental equation of thermodynamics by adding a further generalised force-displacement term: the intensive variable is the electrical potential E, whose conjugate extensive variable is the charge Q moved across that potential

hence

At constant temperature and pressure, the left hand side identifies with dG. For an appreciable difference therefore

where E is the electromotive force of the cell, Q is the charge moved across the potential, and ΔGrxn is the free energy change of the reaction taking place in the battery.

For one mole of reaction, Q = nF where n is the number of moles of electrons transferred per mole of reaction, and F is the total charge on a mole of electrons, otherwise known as the Faraday. For a reaction to occur spontaneously at constant temperature and pressure, ΔGrxn must be negative and so the EMF must be positive. Under standard conditions therefore

The redox reaction which took place in the Voltaic pile constructed by Carlisle and Nicholson was

ΔG0rxn for this reaction is –146.7 kJ/mole, and n=2, giving an EMF of 0.762 volts.

We know from Nicholson’s published paper that their first Voltaic pile consisted of “17 half crowns, with a like number of pieces of zinc”. We also know that Volta’s method of constructing the pile – which Carlisle and Nicholson followed – resulted in the uppermost and lowest discs acting merely as conductors for the adjoining discs. Thus there were not 17, but 16 cells in Carlisle and Nicholson’s first Voltaic pile, giving a total EMF of 12.192 volts.

– – – –

External work

On May 1st, 1800, Carlisle and Nicholson set up their Voltaic pile, gave themselves an obligatory electric shock, and then began experiments with an electrometer which showed “that the action of the instrument was freely transmitted through the usual conductors of electricity, but stopped by glass and other non-conductors.”

Electrical contact with the pile was assisted by placing a drop of water on the uppermost disc, and it was this action which opened the path to discovery. Nicholson records in his paper that at an early stage in these experiments, “Mr. Carlisle observed a disengagement of gas round the touching wire. This gas, though very minute in quantity, evidently seemed to me to have the smell afforded by hydrogen”.

The fact that gas was formed “round the touching wire” indicates that the contact was intermittent: when the wire was in contact with the water drop but not the zinc disc, a miniature electrolytic cell was formed and hydrogen gas was evolved at the wire cathode, while at the anode the zinc conductor was immediately oxidised as soon as the oxygen gas was formed.

In thermodynamic terms, the electrochemical cells in the pile were being used to do external work on the electrolytic cell in which the decomposition of water took place

ΔG0rxn for this reaction is +237.2 kJ/mole. So it can be seen that the external work done by the pile consists of driving what is in effect the combustion of hydrogen in a backwards direction to recover the reactants.

– – – –

Intuitive

Carlisle and Nicholson were intuitive physical chemists. They knew that water was composed of two gases, hydrogen and oxygen, so when bubbles which smelled of hydrogen were observed in their first experiment, it immediately set them thinking. Nicholson wrote of being “led by our reasoning on the first appearance of hydrogen to expect a decomposition of water.”

cn06

William Nicholson (1753-1815)

Nicholson used the term decomposition, so it seems safe to assume they formed the notion that just as water is composed from its constituent gases, it can be decomposed to recover them. That is a powerful conception, the idea that the combustion of hydrogen is a reversible process.

Whether Carlisle and Nicholson extended this thought to other chemical reactions, or even to chemical reactions in general, we do not know. But their demonstration of reversibility, beneath which the principle of chemical equilibrium lies, was an achievement of perhaps even greater moment than the discovery of electrolysis by which they achieved it.

vol04

Anthony Carlisle (1768-1840)

– – – –

Redox reactions

Carlisle and Nicholson’s discovery of electrolysis was made possible by the fact that the decomposition of water into hydrogen and oxygen is a redox reaction. In fact every reaction that takes place in an electrolytic cell is a redox reaction, with oxidation taking place at the anode and reduction taking place at the cathode. The overall electrolytic reaction is thus divided into two half-reactions. In the case of the electrolysis of water, we have

These combined half-reactions are not spontaneous. To facilitate this redox process requires EQ work, which in Carlisle and Nicholson’s case was supplied by the Voltaic pile.

Redox reactions also take place in every voltaic cell, with oxidation at the anode and reduction at the cathode. The difference is that the combined half-reactions are spontaneous, thereby making the cell capable of performing EQ work.

The spontaneous redox reactions in voltaic cells, and the non-spontaneous redox reactions in electrolytic cells, can best be understood by looking at a table of standard oxidation potentials arranged in descending order, such as the one shown below. Using such a list, the EMF of the cell is calculated by subtracting the cathode potential from the anode potential.

[Note that if you use a table of standard reduction potentials, the signs are reversed and the EMF of the cell is calculated by subtracting the anode potential from the cathode potential.]

For voltaic cells, the half-reaction taking place left-to-right at the anode (oxidation) appears higher in the list than the half-reaction taking place right-to-left at the cathode (reduction). The EMF of the cell is positive, and so ΔG will be negative, meaning that the cell reaction is spontaneous and thus capable of performing EQ work.

The situation is reversed for electrolytic cells. The half-reaction taking place left-to-right at the anode (oxidation) appears lower in the list than the half-reaction taking place right-to-left at the cathode (reduction). The EMF of the cell is negative, and so ΔG will be positive, meaning that the cell reaction is non-spontaneous and that EQ work must be performed on the cell to facilitate electrolysis.

The half-reactions of Carlisle and Nicholson’s Voltaic pile, and their platinum-electrode electrolytic cell, are indicated in the table below.

tcn08

Table of standard oxidation potentials

– – – –

The advent of the fuel cell

Anthony Carlisle and William Nicholson

If Carlisle and Nicholson had disconnected their platinum-wire electrolytic cell after bubbles of hydrogen and oxygen had formed on the respective electrodes, and then connected an electrometer across the wires, they would have added yet another momentous discovery to that of electrolysis. They would have discovered the fuel cell.

From a thermodynamic perspective, it is a fairly straightforward matter to comprehend. Under ordinary temperature and pressure conditions, the decomposition of water is a non-spontaneous process; work is required to drive the reaction shown below in the non-spontaneous direction. This work was provided by the Voltaic pile, the effect of which was to increase the Gibbs free energy of the reaction system.

tcn10

Upon disconnection of the Voltaic pile, and the substitution of a circuit wire, the reaction would spontaneously proceed in the reverse direction, decreasing the Gibbs free energy of the reaction system. This system would be capable of performing EQ work.

The reversal of reaction direction transforms the electrolytic cell into a voltaic cell, whose arrangement can be written

H2(g)/Pt | electrolyte | Pt/O2(g)

As can be seen from the above table, the EMF of this voltaic cell is 1.229 volts. We know it today as the hydrogen fuel cell.

Carlisle and Nicholson most surely created the first fuel cell in May 1800. They just didn’t apprehend it, nor did they operate it as a voltaic cell – at least we have no record that they did. So we must classify Carlisle and Nicholson’s fuel cell as an overlooked actuality; an unnoticed birth.

It would take another 42 years before a barrister from the city of Swansea in Wales, William Robert Grove QC, developed the first operational fuel cell, whose essential design features can clearly be traced back to Carlisle and Nicholson’s original.

– – – –

Mouse-over link to the original papers mentioned in this post

Nicholson’s paper (begins on page 179)

– – – –

P Mander September 2015

Advertisement