Posts Tagged ‘Robert John Strutt’


I have always had a fondness for classical experiments that revealed fundamental things about the particulate nature of our world. Examples that spring to mind include JJ Thomson’s cathode ray tube experiment (1897), Robert Millikan’s oil drop experiment (1909), and CTR Wilson’s cloud chamber (1912). The particles of interest in these cases were subatomic, but during this era of discovery there was another pioneering experiment that focused on molecules and their chemical reactivity. The insight this experiment provided was important, but the curious fact is that relatively few people have ever heard of it.

So to resurrect this largely forgotten piece of scientific history, CarnotCycle here tells the story of the Ozone Experiment conducted by the Hon. Robert John Strutt FRS at Imperial College of Science, South Kensington, London in 1912.

– – – –

The experimenter

NPG x122578; Lord Robert John Rayleigh, 4th Baron Rayleigh by Bassano

RJ Strutt (1875-1947) photographed in 1923

The Honorable Robert John Strutt, 4th Baron Rayleigh, might be an unfamiliar name to some of you. But you will undoubtedly have heard of his father, Lord Rayleigh of Rayleigh scattering fame. Where his father led, Robert John followed: first as a research student at the Cavendish Laboratory in Cambridge where his father had been Cavendish professor, and then at Imperial College of Science in South Kensington, London where he followed up his father’s eponymous work on light scattering.

But Robert John did some interesting work of his own. For one thing, he was the first to prove the existence of ozone in the upper atmosphere, and for another he studied the effect of electrical discharges in gases. Interestingly it was a combination of these two things – ozone produced in an electrical discharge tube – that formed the basis of Strutt’s groundbreaking 1912 experiment.

– – – –

The experiment


Here is the apparatus that Strutt employed in his experiment. As the arrows indicate, air enters from the right via stopcock a, where the pressure is significantly reduced by the action of the air pump at left. Low-pressure air then passes through the discharge tube b, where ozone is formed from oxygen according to the reaction

The air, containing ozone at a few percent, enters chamber c where it encounters a silver gauze partition d, mounted between two mica discs e in each of which there is a hole 2 millimeters in diameter. A sealed-in glass funnel g supports the mica discs as shown. As the air passes the gauze, ozone reacts with the silver in what is thought to be an alternating cycle of oxidation and reduction which destroys the ozone while constantly refreshing the silver

The chambers on either side of the gauze partition are connected by tubes f, either of which could be put into communication with a McLeod pressure gauge. The rate of air intake was measured by drawing in air at atmospheric pressure from a graduated vessel standing over water. From this data, combined with the McLeod pressure gauge measurements, the volume v of the low-pressure air stream passing the gauze per second could be calculated.

So to recap, in Strutt’s steady-state experiment, air passes through the apparatus at a constant rate as ozone is generated in the discharge tube and destroyed by the silver gauze. The question then arises – What proportion of the ozone is destroyed as it passes the gauze?

This brings us to the luminous aspect of the ozone experiment, which enabled Strutt to provide an answer.

– – – –

The green glow

The conversion of oxygen into its allotrope ozone was not the only reaction taking place in the discharge tube of Strutt’s apparatus. There was also a reaction between nitrogen and oxygen – known to occur in lightning strikes – which produces nitrogen(II) oxide

Now it just so happens that nitrogen(II) oxide and ozone react in the gas phase to produce activated nitrogen(IV) dioxide, which exhibits chemiluminescence in the form of a green glow as it returns to its ground state

This was a crucial factor in Strutt’s experiment. The air flowing into the chamber c was glowing green due to the above reactions taking place in the gas phase. But as the flow passed the silver gauze, ozone molecules were destroyed with the result that the green glow was weaker in the left-hand chamber compared with the right-hand chamber.

By adjusting the rate of air flow through the apparatus, Strutt could engineer a steady state in which the green glow was just extinguished by the silver gauze – in other words he could find the flow rate at which all of the ozone molecules were destroyed by the silver/silver oxide of the gauze partition.

[To allay doubts, Strutt introduced ozone gas downstream of the gauze where the green glow had been extinguished. The glow was restored.]

Strutt was now in a position to interpret the experiment from a new and pioneering perspective – his 1912 paper was one of the very first to consider a chemical reaction in the context of molecular statistics.

– – – –

The analysis

In terms of chemical process, Strutt’s steady-state experiment was unremarkable. Air flowed through the apparatus and the ozone generated in the discharge tube was destroyed by the silver gauze. The novel feature was in the analysis, where Strutt applied both classical physics and the kinetic theory of gases to calculate the ratio of the mass of ozone impinging upon the silver gauze in a second to the mass passing the gauze in a second.

As mentioned above, Strutt could compute the volume v of the stream passing through the apparatus in a second, so the mass of ozone passing the gauze in a second was simply ρv, where ρ is the density of ozone in the stream as it arrives at the gauze.

In his paper, Strutt states a formula for calculating the mass of ozone impinging upon the silver surface in a second

without showing the steps by which he reached it. These steps are salient to the analysis, so I include the following elucidation due to CN Hinshelwood* in which urms is the root mean square velocity (i.e. the average velocity, with units taken to be cm/s) of the gas molecules:

Suppose we have a solid surface of unit area exposed to the bombardment of gas molecules. Approximately one-sixth of the total number of molecules may be regarded as moving in the direction of the surface with the average velocity. In one second all those within distance urms could reach and strike the surface, unless turned back by a collision with another molecule, but for every one so turned back, another, originally leaving the surface, is sent back to it. Thus the number of molecules striking the surface in a second is equal to one-sixth of the number contained in a prism of unit base and height urms. This number is 1/6.n’.urms,, n’ being the number of molecules in 1 cm^3. Thus the mass of gas impinging upon the surface per second is

A more precise investigation allowing for the unequal speeds of different molecules shows that the factor 1/6 should really be

We therefore arrive at the result that the mass of gas striking an area A in one second is

*CN Hinshelwood, The Kinetics of Chemical Change in Gaseous Systems, 2nd Ed. (1929), Clarendon Press

– – – –

The ratio

Strutt takes the above formula for the mass of ozone impinging on the gauze per second and divides it by the formula for the mass of ozone passing the gauze per second, ρv. This operation cancels out the unknown value of ρ, giving

The values of v (200 cm3s-1) and A (0.0369 cm2) were obtained by Strutt using direct measurements, while urms for ozone molecules is simply stated without mentioning that it is necessarily computed from the fundamental kinetic equation

If n is Avogadro’s number, v is the molar volume and pv = RT, whence

where M is the molar mass. The urms figure Strutt gives for ozone is 3.75 × 104; typically for the time he neglects to state the units which are presumed to be cm/s. This velocity seems a little low, implying a temperature of 270.6K for the air flow in his apparatus. But then again, the pressure dropped significantly at the stopcock so in all likelihood there would have been some Joule-Thomson cooling.

Inserting the values for A, v and urms in the ratio expression gives

Since we can interpret mass in terms of the number of ozone molecules, the ratio expresses the number of collisions to the number of molecules passing, or the average number of times each ozone molecule must strike the silver surface before it passes.

As the experiment is arranged so that no ozone molecules pass the silver gauze, the ratio must represent the average number of collisions that an ozone molecule makes with the silver surface before it is destroyed.

The 1.6 ratio reveals the astonishing fact that practically every ozone molecule which strikes the silver (oxide) surface is destroyed. To a chemical engineer that is a hugely important piece of information, which amply illustrates the value of applying kinetic theory to chemical reactivity.

The application of analogous calculations to the passage of gas streams over solid catalysts in industrial processes is obvious. All of which makes it even more curious that Robert John Strutt’s apparatus, and the pioneering work he did with it, is not better known.

– – – –

Further reading

Hon. RJ Strutt, The Molecular Statistics of some Chemical Actions (1912)
The principal source for this blog post.

CTR Wilson, On an expansion apparatus for making visible the tracks of ionizing particles in gases and some results obtained by its use (1912)
The Cloud Chamber – a truly historic piece of apparatus and one of my favorites. This paper was published in September 1912, just a month before Strutt’s paper.

P Mander August 2016