Posts Tagged ‘thermodynamics’

From the perspective of classical thermodynamics, osmosis has a rather unclassical history. Part of the reason for this, I suspect, is that osmosis was originally categorised under the heading of biology. I can remember witnessing the first practical demonstration of osmosis in a biology class, the phenomenon being explained in terms of pores (think invisible holes) in the membrane that were big enough to let water molecules through, but not big enough to let sucrose molecules through. It was just like a kitchen sieve, we were told. It lets the fine flour pass through but not clumps. This was very much the method of biology in my day, explaining things in terms of imagined mechanism and analogy.

And it wasn’t just in my day. In 1883, JH van ‘t Hoff, an able theoretician and one of the founders of the new discipline of physical chemistry, became suddenly convinced that solutions and gases obeyed the same fundamental law, pv = RT. Imagined mechanism swiftly followed. In van ‘t Hoff’s interpretation, osmotic pressure depended on the impact of solute molecules against the semipermeable membrane because solvent molecules, being present on both sides of the membrane through which they could freely pass, did not enter into consideration.

It all seemed very plausible, especially when van ‘t Hoff used the osmotic pressure measurements of the German botanist Wilhelm Pfeffer to compute the value of R in what became known as the van ‘t Hoff equation

ts04

where Π is the osmotic pressure, and found that the calculated value for R was almost identical with the familiar gas constant. There really did seem to be a parallelism between the properties of solutions and gases.

ae01

JH van ‘t Hoff (1852-1911)

The first sign that there was anything amiss with the so-called gaseous theory of solutions came in 1891 when van ‘t Hoff’s close colleague Wilhelm Ostwald produced unassailable proof that osmotic pressure is independent of the nature of the membrane. This meant that hypothetical arguments as to the cause of osmotic pressure, such as van ‘t Hoff had used as the basis of his theory, were inadmissible.

A year later, in 1892, van ‘t Hoff changed his stance by declaring that the mechanism of osmosis was unimportant. But this did not affect the validity of his osmotic pressure equation ΠV = RT. After all, it had been shown to be in close agreement with experimental data for very dilute solutions.

It would be decades – the 1930s in fact – before the van ‘t Hoff equation’s formal identity with the ideal gas equation was shown to be coincidental, and that the proper thermodynamic explanation of osmotic pressure lay elsewhere.

But long before the 1930s, even before Wilhelm Pfeffer began his osmotic pressure experiments upon which van ‘t Hoff subsequently based his ideas, someone had already published a thermodynamically exact rationale for osmosis that did not rely on any hypothesis as to cause.

That someone was the American physicist Josiah Willard Gibbs. The year was 1875.

gibbs

J. Willard Gibbs (1839-1903)

– – – –

Osmosis without mechanism

It is a remarkable feature of Gibbs’ On the Equilibrium of Heterogeneous Substances that having introduced the concept of chemical potential, he first considers osmotic forces before moving on to the fundamental equations for which the work is chiefly known. The reason is Gibbs’ insistence on logical order of presentation. The discussion of chemical potential immediately involves equations of condition, among whose different causes are what Gibbs calls a diaphragm, i.e. a semipermeable membrane. Hence the early appearance of the following section

to02

In equation 77, Gibbs presents a new way of understanding osmotic pressure. He makes no hypotheses about how a semipermeable membrane might work, but simply states the equations of condition which follow from the presence of such a membrane in the kind of system he describes.

This frees osmosis from considerations of mechanism, and explains it solely in terms of differences in chemical potential in components which can pass the diaphragm while other components cannot.

In order to achieve equilibrium between say a solution and its solvent, where only the solvent can pass the diaphragm, the chemical potential of the solvent in the fluid on both sides of the membrane must be the same. This necessitates applying additional pressure to the solution to increase the chemical potential of the solvent in the solution so it equals that of the pure solvent, temperature remaining constant. At equilibrium, the resulting difference in pressure across the membrane is the osmotic pressure.

Note that increasing the pressure always increases the chemical potential since

to03

is always positive (V1 is the partial molar volume of the solvent in the solution).

– – – –

Europe fails to notice (almost)

Gibbs published On the Equilibrium of Heterogeneous Substances in Transactions of the Connecticut Academy. Choosing such an obscure journal (seen from a European perspective) clearly would not attract much attention across the pond, but Gibbs had a secret weapon. He had a mailing list of the world’s greatest scientists to which he sent reprints of his papers.

One of the names on that list was James Clerk Maxwell, who instantly appreciated Gibbs’ work and began to promote it in Europe. On Wednesday 24 May 1876, the year that ‘Equilibrium’ was first published, Maxwell gave an address at the South Kensington Conferences in London on the subject of Gibbs’ development of the doctrine of available energy on the basis of his new concept of the chemical potentials of the constituent substances. But the audience did not share Maxwell’s enthusiasm, or in all likelihood share his grasp of Gibbs’ ideas. When Maxwell tragically died three years later, Gibbs’ powerful ideas lost their only real champion in Europe.

It was not until 1891 that interest in Gibbs masterwork would resurface through the agency of Wilhelm Ostwald, who together with van ‘t Hoff and Arrhenius were the founders of the modern school of physical chemistry.

ts07

Wilhelm Ostwald (1853-1932) He not only translated Gibbs’ masterwork into German, but also produced a profound proof – worthy of Sadi Carnot himself – that osmotic pressure must be independent of the nature of the semipermeable membrane.

Although perhaps overshadowed by his colleagues, Ostwald had a talent for sensing the direction that the future would take and was also a shrewd judge of intellect – he instinctively felt that there were hidden treasures in Gibbs’ magnum opus. After spending an entire year translating ‘Equilibrium’ into German, Ostwald wrote to Gibbs:

“The translation of your main work is nearly complete and I cannot resist repeating here my amazement. If you had published this work over a longer period of time in separate essays in an accessible journal, you would now be regarded as by far the greatest thermodynamicist since Clausius – not only in the small circle of those conversant with your work, but universally—and as one who frequently goes far beyond him in the certainty and scope of your physical judgment. The German translation, hopefully, will more secure for it the general recognition it deserves.”

The following year – 1892 – another respected scientist sent a letter to Gibbs regarding ‘Equilibrium’. This time it was the British physicist, Lord Rayleigh, who asked Gibbs:

“Have you ever thought of bringing out a new edition of, or a treatise founded upon, your “Equilibrium of Het. Substances.” The original version though now attracting the attention it deserves, is too condensed and too difficult for most, I might say all, readers. The result is that as has happened to myself, the idea is not grasped until the subject has come up in one’s own mind more or less independently.”

Rayleigh was probably just being diplomatic when he remarked that Gibbs’ treatise was ‘now attracting the attention it deserves’. The plain fact is that nobody gave it any attention at all. Gibbs and his explanation of osmosis in terms of chemical potential was passed over, while European and especially British theoretical work centered on the more familiar and more easily understood concept of vapor pressure.

– – – –

Gibbs tries again

Although van ‘t Hoff’s osmotic pressure equation ΠV = RT soon gained the status of a law, the gaseous theory that lay behind it remained clouded in controversy. In particular, van ‘t Hoff’s deduction of the proportionality between osmotic pressure and concentration was an analogy rather than a proof, since it made use of hypothetical considerations as to the cause of osmotic pressure. Following Ostwald’s proof that these were inadmissible, the gaseous theory began to look hollow. A better theory was needed.

to04

Lord Kelvin (1824-1907) and Lord Rayleigh (1842-1919)

This was provided in 1896 by the British physicist, Lord Rayleigh, whose proof was free of hypothesis but did make use of Avogadro’s law, thereby continuing to assert a parallelism between the properties of solutions and gases. Heavyweight opposition to this soon materialized from the redoubtable Lord Kelvin. In a letter to Nature (21 January 1897) he charged that the application of Avogadro’s law to solutions had “manifestly no theoretical foundation at present” and further contended that

“No molecular theory can, for sugar or common salt or alcohol, dissolved in water, tell us what is the true osmotic pressure against a membrane permeable to water only, without taking into account laws quite unknown to us at present regarding the three sets of mutual attractions or repulsions: (1) between the molecules of the dissolved substance; (2) between the molecules of water; (3) between the molecules of the dissolved substance and the molecules of water.”

Lord Kelvin’s letter in Nature elicited a prompt response from none other than Josiah Willard Gibbs in America. Twenty-one years had now passed since James Clerk Maxwell first tried to interest Europe in the concept of chemical potentials. In Kelvin’s letter, with its feisty attack on the gaseous theory, Gibbs saw the opportunity to try again.

In his letter to Nature (18 March 1897), Gibbs opined that “Lord Kelvin’s very interesting problem concerning molecules which differ only in their power of passing a diaphragm, seems only to require for its solution the relation between density and pressure”, and highlighted the advantage of using his potentials to express van ‘t Hoff’s law:

“It will be convenient to use certain quantities which may be called the potentials of the solvent and of the solutum, the term being thus defined: – In any sensibly homogeneous mass, the potential of any independently variable component substance is the differential coefficient of the thermodynamic energy of the mass taken with respect to that component, the entropy and volume of the mass and the quantities of its other components remaining constant. The advantage of using such potentials in the theory of semi-permeable diaphragms consists partly in the convenient form of the condition of equilibrium, the potential for any substance to which a diaphragm is freely permeable having the same value on both sides of the diaphragm, and partly in our ability to express van’t Hoff law as a relation between the quantities characterizing the state of the solution, without reference to any experimental arrangement.”

But once again, Gibbs and his chemical potentials failed to garner interest in Europe. His timing was also unfortunate, since British experimental research into osmosis was soon to be stimulated by the aristocrat-turned-scientist Lord Berkeley, and this in turn would stimulate a new band of British theoreticians, including AW Porter and HL Callendar, who would base their theoretical efforts firmly on vapor pressure.

– – – –

Things Come Full Circle

As the new century dawned, van ‘t Hoff cemented his reputation with the award of the very first Nobel Prize for Chemistry “in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”.

The osmotic pressure law was held in high esteem, and despite Lord Kelvin’s protestations, Britain was well disposed towards the Gaseous Theory of Solutions. The idea circulating at the time was that the refinements of the ideal gas law that had been shown to apply to real gases, could equally well be applied to more concentrated solutions. As Lord Berkeley put it in the introduction to a paper communicated to the Royal Society in London in May 1904:

“The following work was undertaken with a view to obtaining data for the tentative application of van der Waals’ equation to concentrated solutions. It is evidently probable that if the ordinary gas equation be applicable to dilute solutions, then that of van der Waals, or one of analogous form, should apply to concentrated solutions – that is, to solutions having large osmotic pressures.”

Lord Berkeley’s landmark experimental studies on the osmotic pressure of concentrated solutions called renewed attention to the subject among theorists, who now had some fresh and very accurate data to work with. Alfred Porter at University College London attempted to make a more complete theory by considering the compressibility of a solution to which osmotic pressure was applied, while Hugh Callendar at Imperial College London combined the vapor pressure interpretation of osmosis with the hypothesis that osmosis could be described as vapor passing through a large number of fine capillaries in the semipermeable membrane. This was in 1908.

to05

H L Callendar (1863-1930)

So seventeen years after Wilhelm Ostwald conclusively proved that hypothetical arguments as to the cause of osmotic pressure were inadmissible, things came full circle with hypothetical arguments once more being advanced as to the cause of osmotic pressure.

And as for Gibbs, his ideas were as far away as ever from British and European Science. The osmosis papers of both Porter (1907) and Callendar (1908) are substantial in referenced content, but nowhere do either of them make any mention of Gibbs or his explanation of osmosis on the basis of chemical potentials.

There is a special irony in this, since in Callendar’s case at least, the scientific papers of J Willard Gibbs were presumably close at hand. Perhaps even on his office bookshelf. Because that copy of Gibbs’ works shown in the header photo of this post – it’s a 1906 first edition – was Hugh Callendar’s personal copy, which he signed on the front endpaper.

to06

Hugh Callendar’s signature on the endpaper of his personal copy of Gibbs’ Scientific Papers, Volume 1, Thermodynamics.

– – – –

Epilogue

Throughout this post, I have made repeated references to that inspired piece of thinking by Wilhelm Ostwald which conclusively demonstrated that osmotic pressure must be independent of the nature of the membrane.

Ostwald’s reasoning is so lucid and compelling, that one wonders why it didn’t put an end to speculation on osmotic mechanisms. But it didn’t, and hasn’t, and probably won’t.

Here is how Ostwald presented the argument in his own Lehrbuch der allgemeinen Chemie (1891). Enjoy.

ts08

“… it may be stated with certainty that the amount of pressure is independent of the nature of the membrane, provided that the membrane is not permeable by the dissolved substance. To understand this, let it be supposed that two separating partitions, A and B, formed of different membranes, are placed in a cylinder (fig. 17). Let the space between the membranes contain a solution and let there be pure water in the space at the ends of the cylinder. Let the membrane A show a higher pressure, P, and the membrane B show a smaller pressure, p. At the outset, water will pass through both membranes into the inner space until the pressure p is attained, when the passage of water through B will cease, but the passage through A will continue. As soon as the pressure in the inner space has been thus increased above p, water will be pressed out through B. The pressure can never reach the value P; water must enter continuously through A, while a finite difference of pressures is maintained. If this were realised we should have a machine capable of performing infinite work, which is impossible. A similar demonstration holds good if p>P ; it is, therefore, necessary that P=p; in other words, it follows necessarily that osmotic pressure is independent of the nature of the membrane.”

(English translation by Matthew Pattison Muir)

– – – –

P Mander July 2015

William Nicholson and Anthony Carlisle

May 1800: Carlisle (left) and Nicholson discover electrolysis

The two previous posts on this blog concerning the leaking of details about the newly-invented Voltaic pile to Anthony Carlisle and William Nicholson, and their subsequent discovery of electrolysis, are more about the path of temptation and birth of electrochemistry than about classical thermodynamics. In fact there was no thermodynamic content at all.

So by way of steering this set of posts back on track, I thought I would apply contemporary thermodynamic knowledge to Carlisle and Nicholson’s 18th century activities, in order to give another perspective to their famous experiments.

– – – –

The Voltaic pile

cn02

Z = zinc, A = silver

In thermodynamic terms, Alessandro Volta’s fabulous invention – an early form of battery – is a system capable of performing additional work other than pressure-volume work. The extra capability can be incorporated into the fundamental equation of thermodynamics by adding a further generalised force-displacement term: the intensive variable is the electrical potential E, whose conjugate extensive variable is the charge Q moved across that potential

tcn01

hence

tcn02

At constant temperature and pressure, the left hand side identifies with dG. For an appreciable difference therefore

tcn03

where E is the electromotive force of the cell, Q is the charge moved across the potential, and ΔGrxn is the free energy change of the reaction taking place in the battery.

For one mole of reaction, Q = nF where n is the number of moles of electrons transferred per mole of reaction, and F is the total charge on a mole of electrons, otherwise known as the Faraday. For a reaction to occur spontaneously at constant temperature and pressure, ΔGrxn must be negative and so the EMF must be positive. Under standard conditions therefore

tcn04

The redox reaction which took place in the Voltaic pile constructed by Carlisle and Nicholson was

tcn05

ΔG0rxn for this reaction is –146.7 kJ/mole, and n=2, giving an EMF of 0.762 volts.

We know from Nicholson’s published paper that their first Voltaic pile consisted of “17 half crowns, with a like number of pieces of zinc”. We also know that Volta’s method of constructing the pile – which Carlisle and Nicholson followed – resulted in the uppermost and lowest discs acting merely as conductors for the adjoining discs. Thus there were not 17, but 16 cells in Carlisle and Nicholson’s first Voltaic pile, giving a total EMF of 12.192 volts.

– – – –

External work

On May 1st, 1800, Carlisle and Nicholson set up their Voltaic pile, gave themselves an obligatory electric shock, and then began experiments with an electrometer which showed “that the action of the instrument was freely transmitted through the usual conductors of electricity, but stopped by glass and other non-conductors.”

Electrical contact with the pile was assisted by placing a drop of water on the uppermost disc, and it was this action which opened the path to discovery. Nicholson records in his paper that at an early stage in these experiments, “Mr. Carlisle observed a disengagement of gas round the touching wire. This gas, though very minute in quantity, evidently seemed to me to have the smell afforded by hydrogen”.

The fact that gas was formed “round the touching wire” indicates that the contact was intermittent: when the wire was in contact with the water drop but not the zinc disc, a miniature electrolytic cell was formed and hydrogen gas was evolved at the wire cathode, while at the anode the zinc conductor was immediately oxidised as soon as the oxygen gas was formed.

In thermodynamic terms, the electrochemical cells in the pile were being used to do external work on the electrolytic cell in which the decomposition of water took place

tcn06

ΔG0rxn for this reaction is +237.2 kJ/mole. So it can be seen that the external work done by the pile consists of driving what is in effect the combustion of hydrogen in a backwards direction to recover the reactants.

– – – –

Intuitive

Carlisle and Nicholson were intuitive physical chemists. They knew that water was composed of two gases, hydrogen and oxygen, so when bubbles which smelled of hydrogen were observed in their first experiment, it immediately set them thinking. Nicholson wrote of being “led by our reasoning on the first appearance of hydrogen to expect a decomposition of water.”

cn06

William Nicholson (1753-1815)

Nicholson used the term decomposition, so it seems safe to assume they formed the notion that just as water is composed from its constituent gases, it can be decomposed to recover them. That is a powerful conception, the idea that the combustion of hydrogen is a reversible process.

Whether Carlisle and Nicholson extended this thought to other chemical reactions, or even to chemical reactions in general, we do not know. But their demonstration of reversibility, beneath which the principle of chemical equilibrium lies, was an achievement of perhaps even greater moment than the discovery of electrolysis by which they achieved it.

vol04

Anthony Carlisle (1768-1840)

– – – –

Redox reactions

Carlisle and Nicholson’s discovery of electrolysis was made possible by the fact that the decomposition of water into hydrogen and oxygen is a redox reaction. In fact every reaction that takes place in an electrolytic cell is a redox reaction, with oxidation taking place at the anode and reduction taking place at the cathode. The overall electrolytic reaction is thus divided into two half-reactions. In the case of the electrolysis of water, we have

tcn07

These combined half-reactions are not spontaneous. To facilitate this redox process requires EQ work, which in Carlisle and Nicholson’s case was supplied by the Voltaic pile.

Redox reactions also take place in every voltaic cell, with oxidation at the anode and reduction at the cathode. The difference is that the combined half-reactions are spontaneous, thereby making the cell capable of performing EQ work.

The spontaneous redox reactions in voltaic cells, and the non-spontaneous redox reactions in electrolytic cells, can best be understood by looking at a table of standard oxidation potentials arranged in descending order, such as the one shown below. Using such a list, the EMF of the cell is calculated by subtracting the cathode potential from the anode potential.

[Note that if you use a table of standard reduction potentials, the signs are reversed and the EMF of the cell is calculated by subtracting the anode potential from the cathode potential.]

For voltaic cells, the half-reaction taking place left-to-right at the anode (oxidation) appears higher in the list than the half-reaction taking place right-to-left at the cathode (reduction). The EMF of the cell is positive, and so ΔG will be negative, meaning that the cell reaction is spontaneous and thus capable of performing EQ work.

The situation is reversed for electrolytic cells. The half-reaction taking place left-to-right at the anode (oxidation) appears lower in the list than the half-reaction taking place right-to-left at the cathode (reduction). The EMF of the cell is negative, and so ΔG will be positive, meaning that the cell reaction is non-spontaneous and that EQ work must be performed on the cell to facilitate electrolysis.

The half-reactions of Carlisle and Nicholson’s Voltaic pile, and their platinum-electrode electrolytic cell, are indicated in the table below.

tcn08

Table of standard oxidation potentials

– – – –

The advent of the fuel cell

Anthony Carlisle and William Nicholson

If Carlisle and Nicholson had disconnected their platinum-wire electrolytic cell after bubbles of hydrogen and oxygen had formed on the respective electrodes, and then connected an electrometer across the wires, they would have added yet another momentous discovery to that of electrolysis. They would have discovered the fuel cell.

From a thermodynamic perspective, it is a fairly straightforward matter to comprehend. Under ordinary temperature and pressure conditions, the decomposition of water is a non-spontaneous process; work is required to drive the reaction shown below in the non-spontaneous direction. This work was provided by the Voltaic pile, the effect of which was to increase the Gibbs free energy of the reaction system.

tcn10

Upon disconnection of the Voltaic pile, and the substitution of a circuit wire, the reaction would spontaneously proceed in the reverse direction, decreasing the Gibbs free energy of the reaction system. This system would be capable of performing EQ work.

The reversal of reaction direction transforms the electrolytic cell into a voltaic cell, whose arrangement can be written

H2(g)/Pt | electrolyte | Pt/O2(g)

As can be seen from the above table, the EMF of this voltaic cell is 1.229 volts. We know it today as the hydrogen fuel cell.

Carlisle and Nicholson most surely created the first fuel cell in May 1800. They just didn’t apprehend it, nor did they operate it as a voltaic cell – at least we have no record that they did. So we must classify Carlisle and Nicholson’s fuel cell as an overlooked actuality; an unnoticed birth.

It would take another 42 years before a barrister from the city of Swansea in Wales, William Robert Grove QC, developed the first operational fuel cell, whose essential design features can clearly be traced back to Carlisle and Nicholson’s original.

– – – –

Mouse-over link to the original papers mentioned in this post

Nicholson’s paper (begins on page 179)

– – – –

P Mander September 2015

cr01

Before we begin

Here’s some news. My January 2014 blogpost “Carathéodory: the forgotten pioneer” has been translated into Greek by Giorgos Vachtanidis, and can be seen here.

– – – –

Two years on …

Despite the somewhat esoteric nature of Carathéodory’s axiomatic approach to thermodynamics via the geometric behavior of Pfaffians – or perhaps even because of it – my blogpost “Carathéodory: the forgotten pioneer” has received a surprisingly large number of hits, with plenty of brave individuals willing to click on the link to the English version of Carathéodory’s original paper published in 1909 in Mathematische Annalen under the title “Untersuchungen über die Grundlagen der Thermodynamik” [Examination of the foundations of thermodynamics].

Carathéodory’s second axiom “In the neighborhood of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist states that are inaccessible by reversible adiabatic processes”, and the associated theorem giving the condition for dQ to be an integrable differential, constitute the real novelty of his approach.

My original post described Carathéodory’s theorem without going into the proof, since it is rather abstruse and would have appealed only to more avid students of his work. Two years on however, the statistics for this blogpost reveal that there are plenty of avid students wanting to know more. So as a supplementary post, here is a proof of Carathéodory’s theorem, due to Pierre Perrot. Enjoy.

– – – –

Carathéodory’s theorem

“If a differential dQ = ΣXidxi, possesses the property that in an arbitrarily close neighborhood of a point P defined by its coordinates (x1, x2,…, xn) there are points which cannot be connected to P along curves satisfying the equation dQ = 0, then dQ is integrable.”

In the following, use is made of a classical result known as the Clausius inequality

cr07

Proof

Cases n = 1 and n = 2 are trivial because a differential function of only one variable is necessarily total whereas a differential function of two variables is necessarily integrable. All points accessible to a given point P form a continuous domain around P. In an n-dimensional space (n≥3) around P, this domain fills a volume [n dimensions], or a surface [(n-l) dimensions], or a curve [≤ (n-2) dimensions].

The first possibility is excluded because it contradicts the hypothesis that around P there are points which are inaccessible. The third possibility is also excluded because the expression dQ = 0 already defines a surface element containing only points accessible to P. Therefore, points close to P and accessible to P define only a surface. If we now consider a point P’ on that surface, it is impossible to go from P to P’ by a curve satisfying the condition ∫dQ = 0 and not situated on this surface, otherwise every point situated within the immediate proximity of P would be accessible, which contradicts the hypothesis.

From a point P1 it is possible to define a surface S1, upon which all points are accessible to P1. Also, from a point P2 not situated on S1, it is possible to define a surface S2. Surfaces S1 and S2 have no common point between them, otherwise it would be possible to go from P1 to P2 by a path such that ∫dQ = 0. Therefore there is a family of surfaces where σ(x1, x2,…, xn) is constant, filling the space and having no common point among them. For this one-parameter family, dσ = 0 implies dQ = 0, from which, between dQ and dσ, there exists a relation of the type:

cr02

where, because dQ = ΣXidxi

cr03

Naturally, the family of surfaces for which σ is constant may also be expressed by S(σ) = constant, where S(σ) is an arbitrary function of σ:

cr04

Hence

cr05

(l/T) is the integrating factor. If a differential dQ has one integrating factor, it has an infinity, S being an arbitrary function of σ.

– – – –

Summary

Carathéodory’s theorem shows that if a differential dQ is integrable, the equation dQ = 0 characterizes in a space a family of surfaces sharing no common point. For any point P on one of these surfaces, it is always possible to find, immediately near that point, points which do not belong to the surface and which are therefore inaccessible by a curve solution of the equation dQ = 0. On the other hand, if dQ is not integrable, the equation dQ = 0 does not define any surface in the space and it will always be possible to link any two points with a curve solution of the equation dQ = 0.

– – – –

P Mander November 2015

afr01

If the man who almost single-handedly invented chemical thermodynamics – the American mathematical physicist Josiah Willard Gibbs – had owned an automobile, he would have had no trouble figuring out the action of antifreeze.

“The problem reduces to consideration of a binary solution in equilibrium with solid solvent,” I can hear old Josiah saying. “Such a thermodynamic system has two degrees of freedom, so at constant pressure there must be a relation between temperature and composition.”

And indeed there is. The relation corresponds to the observed depression of the freezing point of a solvent by a solute. What’s more, its exact form confirms how antifreeze really works.

– – – –

Computing chemical potential

We have Josiah Willard Gibbs to thank for introducing the concept of chemical potential (μ) as a sort of generalized force driving the flow of chemical components between coexistent phases.

When the phases are in equilibrium at constant temperature and pressure, the chemical potential of any component has the same value in each phase

pe04

The key point to note here is that μi is the chemical potential of component i in an arbitrary state, i.e. in a mixture of components. In order to compute this potential we need to know two things: the chemical potential of the pure substance μi0 at a pressure p (such as that of the atmosphere), and the mole fraction (xi) of the component in the mixture. Assuming an ideal solution, use can then be made of the textbook formula

dce12 …(1)

With pressure and temperature fixed, this equation has a single variable (xi), from which we can draw the conclusion that the variation in chemical potential of a component in an ideal solution is determined solely by its own mole fraction.

The significance of this fact can be appreciated by considering the following diagrams

afr03

Here is water in equilibrium with ice at 273K. The chemical potentials of the solid and liquid phases are equal; there is no net driving force in either direction. Now consider the effect of adding an antifreeze agent to the liquid phase

afr04

Assuming the temperature held constant at 273K, the addition of antifreeze reduces the mole fraction of water, lowering its chemical potential in accordance with equation 1. The coexistent solid phase now has a higher potential, providing the driving force to transform ice into water. Since the temperature is held constant, this equates to the lowering of the freezing point of water in the mixture.

– – – –

Deducing a formula for freezing-point depression

To obtain a formula for the freezing point of water in a solution containing antifreeze, we start with the equilibrium relation

afr06

where the zero superscript indicates a standard potential, i.e. that the solid phase consists of pure ice whose mole fraction x is unity. Substituting the left hand side with

afr07

we obtain

afr08

which after differentiation with respect to temperature at constant pressure and subsequent integration yields the formula for the freezing point of water in a solution containing antifreeze at 1 atmosphere pressure:

afr09

The terms on the right are the molar enthalpy of fusion of water (ΔHf0), the freezing point of pure water (Tf0), the gas constant R and the mole fraction of water (xH2O) in the solution containing antifreeze.

The latter is the only variable, confirming that the freezing point of water in a solution containing antifreeze is determined solely by the mole fraction of water in the mixture – in other words the extent to which the water is diluted by the antifreeze agent.

This is how antifreeze works. There is nothing active about its action. It exerts its effect passively by being miscible and thereby reducing the mole fraction of water in the liquid mixture. There’s really nothing more to it than that.

– – – –

Using the formula

afr09

Values for constants

Enthalpy of fusion of water ΔHf0 = 6.02 kJmol-1
Freezing point of pure water Tf0 = 273.15 K
Gas constant R = 0.008314 kJmol-1K-1

Example

651 grams of the antifreeze agent ethylene glycol (molecular weight 62.07) are added to 1.5 kg of water (molecular weight 18.02). What is the freezing point of water in this solution?

Strategy

1. Calculate the mole fraction of water in the solution

afr10

Number of moles of water = 1500/18.02 = 83.2
Number of moles of ethylene glycol = 651/62.07 = 10.5
Mole fraction of water = 83.2/(83.2 + 10.5) = 0.89

2. Calculate the freezing point of water in the solution

afr11

The solution will give antifreeze protection down to 261.65K or –11.5°C

– – – –

P Mander March 2015

gibbs

It was the American mathematical physicist Josiah Willard Gibbs who introduced the concepts of phase and chemical potential in his milestone monograph On the Equilibrium of Heterogeneous Substances (1876-1878) with which he almost single-handedly laid the theoretical foundations of chemical thermodynamics.

In a paragraph under the heading “On Coexistent Phases of Matter” Gibbs mentions – in passing – that for a system of coexistent phases in equilibrium at constant temperature and pressure, the chemical potential μ of any component must have the same value in every phase.

This simple statement turns out to have considerable practical value as we shall see. But first, let’s go through the formal proof of Gibbs’ assertion.

An important result

pe01

Consider a system of two phases, each containing the same components, in equilibrium at constant temperature and pressure. Suppose a small quantity dni moles of any component i is transferred from phase A in which its chemical potential is μ’i to phase B in which its chemical potential is μ”i. The Gibbs free energy of phase A changes by –μ’idni while that of phase B changes by +μ”idni. Since the system is in equilibrium at constant temperature and pressure, the net change in Gibbs free energy for this process is zero and we can write

pe02

hence

pe03

This result can be generalized for any number of phases: for a system in equilibrium at constant temperature and pressure, the chemical potential of any given component has the same value in every phase.

pe04

– – – –

Visualizing variance

The equality of pressure P, temperature T and component chemical potentials μn between coexistent phases in equilibrium provides a convenient way to visualize variance, or the number of degrees of freedom a system possesses. For example, the triple point of a single component system can be visualized as the array

pe05

where the solid, liquid and vapor phases are indicated by one, two and three primes respectively.

Each row represents a single variable, so the number of rows equates to the total number of variables. Each column lists the variables in a single phase. All but one of these may be independently varied; the last is determined by the Gibbs-Duhem relation

pr02

There are one of these for each phase, so the number of columns equates to the number of relations (=constraints) to which the system variables are subject. The variance, or number of degrees of freedom (f) of the system is defined

pe06

For arrays of the kind presented above, this transposes into

pe07

For the triple point of a single component system, there are three rows and three columns, so f =0. With zero degrees of freedom, the triple point is not subject to independent variation and is represented by a fixed point in the PT plane.

The above rule implies that a system of coexistent phases in equilibrium cannot have more phases than intensive system variables.

– – – –

Generating useful equations

For a component present in any pair of coexistent phases in equilibrium at constant temperature and pressure, the chemical potential of that component has the same value in both phases

pe03

From this general relation, equations may be deduced for computing various properties of thermodynamic systems such as ideal solutions, for example the elevation of boiling point, the depression of freezing point, and the variation of the solubility of a solute with temperature.

The key point to grasp is that μi is the chemical potential of component i in an arbitrary state, i.e. in a mixture of components. In order to compute this potential we need to know two things: the chemical potential of the pure substance μi0 at a pressure p (such as that of the atmosphere), and the mole fraction (xi) of the component in the mixture. Assuming an ideal solution, use can then be made of the textbook formula

dce12 … (1)

where for a given phase, μi is the arbitrary chemical potential of i in the mixture, μ°i is the chemical potential of the pure substance, and xi is the mole fraction of the component.

As an example, let us take the relation

pe08 …(2)

where the chemical potential of the solid solvent is necessarily the standard potential because the mole fraction x is unity. The above relation will generate an equation for the depression of the solvent freezing point in a solution at a fixed pressure (p).

Substituting (1) for the liquid phase in (2) gives

pe09

pe10

where by convention the subscript 1 refers to the solvent. Differentiating with respect to T at constant pressure

pe11

using the quotient rule for ΔG/T gives

pe12 … (3)

Now since

pe13

equation (3) simplifies to

pe14

Integrating from the pure solvent state, where the mole fraction x1=1 and T0fus is the freezing point of the pure solvent, to the solution state where the mole fraction x1= x1 and Tfus is the freezing point of the solvent in the solution

pe15

yields the equation for the depression of the solvent freezing point in a solution at a fixed pressure (p)

pe16

Since x1<1 in a solution, the logarithm is negative and therefore the freezing point of the solvent in the solution must be lower than the freezing point of the pure solvent.

– – – –

Ok, so maybe that wasn’t the simplest procedure for generating a useful thermodynamic equation. But the point to be made here is that the same procedure applies in the other cases, so you only need to understand the principle once.

For example, the equation for elevation of solvent boiling point in solution with a non-volatile solute at a fixed pressure (p) is

pe17

The similarity to the previous equation is evident.

– – – –

P Mander February 2015