Posts Tagged ‘Van ‘t Hoff equation’

ae01

In my previous post JH van ‘t Hoff and the Gaseous Theory of Solutions, I related how van ‘t Hoff deduced a thermodynamically exact relation between osmotic pressure and the vapor pressures of pure solvent and solvent in solution, and then abandoned it in favor of an erroneous idea which seemed to possess greater aesthetic appeal, on account of a chance encounter with a colleague in an Amsterdam street.

Rendered in modern notation, the thermodynamically exact equation van ‘t Hoff deduced in his Studies in Chemical Dynamics (1884), was

ts06

Following his flawed moment of inspiration upon learning the results of osmotic experiments conducted by Wilhelm Pfeffer, he leaped to the conclusion that the law of dilute solutions was formally identical with the ideal gas law

ts04

It would seem van ‘t Hoff was so enamored with the idea of solutions and gases obeying the same fundamental law, that he failed to notice that the latter equation is actually a special case of the former. Viewed from this perspective, the latter’s resemblance to the gas law is entirely coincidental; it arises solely from a sequence of approximations applied to the original equation.

As a footnote to history, CarnotCycle lays out the path by which the latter equation can be reached from the former, and shows how accuracy reduces commensurately with simplification.

– – – –

We begin with van ‘t Hoff’s thermodynamically exact equation from the Studies in Chemical Dynamics

ts06 (1)

where Π is the osmotic pressure, V1 is the partial molal volume of the solvent in the solution, p0 is the vapor pressure of the pure solvent and p is the vapor pressure of the solvent in the solution.

Assuming an ideal solution, in the sense that Raoult’s law is obeyed, then

ae02

where x1 and x2 are the mole fractions of solvent and solute respectively. So for an ideal solution, equation 1 becomes

ae03

If the ideal solution is also dilute, the mole fraction of the solute is small and hence

ae04

so that

ae05

For a dilute solution x2 approximates to n2/n1, where n2 and n1 are the moles of solute and solvent, respectively, in the solution. The above equation may therefore be written

ae06

In dilute solution, the partial molal volume of the solvent V1 is generally identical with the ordinary molar volume of the solvent. The product V1n1 is then the total volume of solvent in the solution, and V1n1/n2 is the volume of solvent per mole of solute. Representing this quantity by V’, the above equation becomes

ae07 (2)

which is identical with the empirical equation proposed by HN Morse in 1905. For an extremely dilute solution the volume V’ may be replaced by the volume V of the solution containing 1 mole of solute; under these conditions we have

ts04 (3)

which is the van ‘t Hoff equation.

– – – –

It is instructive to compare the osmotic pressures calculated from the numbered equations shown above and those obtained by experiment. It is seen that Eq.1, which involves measured vapor pressures, is in good agreement with experiment at all concentrations. Eq.3 fails in all but the most dilute solutions, while Eq.2 represents only a modest improvement.

ae08

These figures give a measure of van ‘t Hoff’s talent as a theoretician in deducing Eq.1, and the error into which he fell when abandoning it in favor of Eq.3.

– – – –

Mouse-over links to works referred to in this post

Jacobus Henricus van ‘t Hoff Studies in Chemical Dynamics

– – – –

P Mander June 2015

gibbs helmholtz cartoon

History

The Gibbs-Helmholtz equation was first deduced by the German physicist Hermann von Helmholtz in his groundbreaking 1882 paper “Die Thermodynamik chemischer Vorgänge” (On the Thermodynamics of Chemical Processes). In it, he introduced the concept of free energy (freie Energie) and used the equation to demonstrate that free energy – not heat production – was the driver of spontaneous change in isothermal chemical reactions, thereby overthrowing the famously incorrect Thomsen-Berthelot principle.

Although Gibbs was first to state the relations A = U – TS and G = U + PV – TS, he did not explicitly state the Gibbs-Helmholtz equation, nor did he explore its chemical significance. So the honors for this equation really belong more to Helmholtz than to Gibbs.

But from the larger historical perspective, both of these gentlemen can rightly be considered the founders of chemical thermodynamics – Gibbs for his hugely long and insanely difficult treatise “On the Equilibrium of Heterogeneous Substances” (1875-1878), and Helmholtz for his landmark paper referred to above. These works had a significant influence on the development of physical chemistry.

– – – –

Derivation

The confusing thing about the Gibbs-Helmholtz equation is that it comes in three different versions, but most physical chemistry texts don’t say why. This is not helpful to students. Chemical thermodynamics is difficult enough already, so CarnotCycle will begin by giving the reason.

It just so happens that the form of calculus used in the Gibbs-Helmholtz equation has the following property:

For a thermodynamic state function (f) and its natural variables (x,y)

gh01

If we choose as our state function (f) the Gibbs Free Energy G and assign its natural variables, temperature T to (x) and pressure P to (y), we obtain:

gh02

Since (∂G/∂T)P = –S, and G ≡ H – TS

gh03

This is the Gibbs-Helmholtz equation. If we apply this equation to the initial and final states of a process occurring at constant temperature and pressure, and take the difference, we obtain:

gh4

where ΔH is the enthalpy change of a process taking place in a closed system capable of PV work; the three equivalent versions of the equation are determined by the properties of calculus:

gh05  (1)

gh06 (2)

gh07  (3)

A further useful relation can be derived from (2) and (3) using the equation ΔG° = –RTlnKp for a gas reaction where each of the reactants and products is in the standard state of 1 atm pressure.

Substituting –RlnKp for ΔG°/T in (2) and (3) yields

gh11  (4)

gh12  (5)

These are equivalent forms of the van ‘t Hoff equation, named after the Dutch physical chemist and first winner of the Nobel Prize in Chemistry, J.H. van ‘t Hoff (1852-1911). Approximate integration yields

gh13  (6)

– – – –

Applications of the Gibbs-Helmholtz equation

1. Calculate ΔHrxn from ΔG and its variation with temperature at constant pressure
This application of (1) is useful particularly in relation to reversible reactions in electrochemical cells, where ΔG identifies with the electrical work done –nFE. Scroll down to see the worked example GH1

2. Calculate ΔGrxn for a reaction at a temperature other than 298K
ΔH usually varies slowly with temperature, and can with reasonable accuracy be regarded as constant. Integration of (2) or (3) enables you to compute ΔGrxn for a constant-pressure process at a temperature T2 from a knowledge of ΔG and ΔH at temperature T1. Scroll down to see the worked example GH2

3. Calculate the effect of a temperature change on the equilibrium constant Kp
ΔH usually varies slowly with temperature, and can with reasonable accuracy be regarded as constant. The integrated van ‘t Hoff equation (6) allows the equilibrium constant Kp at T2 to be calculated with knowledge of Kp and ΔH° at T1. Scroll down to see the worked example GH3

– – – –

Insight: The Φ function and the meaning of –ΔG/T

By 1897, Hermann von Helmholtz was dead and Max Plank was professor of theoretical physics at the University of Berlin where he published Treatise on Thermodynamics, a popular textbook which ran to several editions. In it, Planck introduced the Φ function (originally deduced by François Massieu in 1869) as a measure of chemical stability:

planck function

The pencilled note in my German copy – found in a charity sale at a downtown church – correctly identifies Φ with –ξ/T, which in modern notation is –G/T

 

S is the entropy of the system, and (U+pV)/T is the enthalpy H of the system divided by its temperature T. Since G ≡ H – TS, we can immediately identify Φ with –G/T.

Planck’s formula indicates that Φ tends to be large when S is large and H is small, i.e. when the energy levels are closely spaced and the ground level is low – the criteria for chemical stability.

The Φ function gets even more interesting when one considers the meaning of ΔΦ.

ΔΦ = –ΔG/T = –ΔH/T + ΔS = ΔSsurroundings + ΔSsystem = ΔSuniverse

ΔΦ and –ΔG/T equate to the increase in the entropy of the universe: a measure of the ultimate driving force behind chemical reactions. The larger the value, the more strongly the reaction will want to go.

A direct association between –ΔG/T and the equilibrium constant K is thus implied, and this can be confirmed by rearranging the relation ΔG° = –RTlnKp to: –ΔG°/T = RlnKp

– – – –

Worked Example GH1

An electrochemical cell has the following half reactions:
Anode (oxidation):  Ag(s) + Cl → AgCl(s) + 1e
Cathode (reduction): ½Hg2Cl2(s) + 1e → Hg(l) + Cl

The EMF of the cell is +0.0455 volt at 298K and the temperature coefficient is +3.38 x 10-4 volt per kelvin. Calculate the enthalpy of the cell reaction, taking the faraday (F) as 96,500 coulombs.

Strategy

Use version 1 of the Gibbs-Helmholtz equation

gh05

Substitute for ΔG using the relation ΔG = –nFE

gh16

Calculation

[note that if the EMF is positive, the reaction proceeds spontaneously in the direction shown in the half reactions. If the EMF is negative, the reaction goes in the opposite direction]

The complete cell reaction for one 1 faraday is:
Ag(s) + ½Hg2Cl2(s) → AgCl(s) + Hg(l)
Each mole of silver transfers one mole of electrons (1e) to one mole of Cl ions. So n = 1.
F = 96,500 C
E = 0.0455 V
T = 298 K
(∂E/∂T)P = 3.38 x 10-4 VK-1

ΔHrxn = –1 x 96,500 (0.0455 – 298 (3.38 x 10-4)) joules
Dimensions check: remember that V= J/C, so C x V = J

ΔHrxn = 5329 J = 5.329 kJ

[note that this electrochemical cell makes use of a spontaneous endothermic reaction]

– – – –

Insight: The effect of temperature on EMF

From version 1 of the Gibbs-Helmholtz equation

gh05

and the relations ΔG = –nFE and (∂ΔG/∂T)P = –ΔS, it can be seen that

gh17

For many redox reactions that are used to power electrochemical cells, ΔSrxn is typically small (less than 50 JK-1). As a result (∂E/∂T)P is usually in the 10-4 to 10-5 range, and hence electrochemical cells are relatively insensitive to temperature.

winter text

– – – –

Worked Example GH2

The Haber Process for the production of ammonia is one of the most important industrial processes: N2(g) + 3H2(g) = 2NH3(g)
ΔG°(298K) = –33.3 kJ
ΔH°(298K) = –92.4kJ
Calculate ΔG° at 500K

Strategy

Use version 3 of the Gibbs-Helmholtz equation

gh07

Making the assumption that ΔH° remains approximately constant, perform integration

gh151

gh133

Solve for ΔG°(T2)

Calculation

ΔG°(T1) = –33.3 kJ
ΔH° = –92.4 kJ
T2 = 500K
T1 = 298K

Inserting these values into the integrated equation yields the result ΔG°(500K) ≈ 6.76 kJ. Compared with the negative value of ΔG° at 298K, the small positive value of ΔG° at 500K shows that the reaction has just become unfeasible at this temperature, pressure remaining constant at 1 atm.

– – – –

Insight: Reading the Haber process equation

N2(g) + 3H2(g) = 2NH3(g) ΔH°(298K) = –92.4 kJ

The Haber process is exothermic (negative ΔH) and results in a halving of volume (negative ΔS). Since ΔG = ΔH – TΔS, increasing the temperature will drive ΔG in a positive direction, leading to an upper temperature limit on reaction feasibility.

Le Châtelier’s principle shows that the Haber process is thermodynamically favored by low temperature and high pressure. In practice however a compromise has to be struck, since low temperature slows the rate at which equilibrium is achieved while high pressure increases the cost of equipment and maintenance.

fh text

– – – –

Worked Example GH3

The Haber Process for the production of ammonia is one of the most important industrial processes:
N2(g) + 3H2(g) = 2NH3(g) ΔH°(298K) = –92.4 kJ
The equilibrium constant KP at 298K is 6.73 x 105. Calculate KP at 400K.

Strategy

Use the approximate integral of the van ‘t Hoff equation (6) to solve for KP(T2)

gh10

gh16

Calculation

KP(T1) = 6.73 x 105, ln KP(T1) = 13.42
ΔH°(298K) = –92400 J (mol-1)
R = 8.314 J K-1 mol-1
T2 = 400K
T1 = 298K

Inserting these values into the integrated equation yields the approximate result ln KP(T2) ≈ 3.91, therefore KP(400K) ≈ 49.92. This is reasonably close to the measured value of KP(400K) = 48.91.

Compared to the large value of KP at 298K, the small positive value of KP at 400K shows that the reaction is approaching the point where it will shift to become reactant-favorable rather than product favorable.

final

© P Mander August 2015